메뉴 건너뛰기




Volumn 68, Issue 5, 2000, Pages 424-429

Curve fits in the presence of random and systematic error

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0034395412     PISSN: 00029505     EISSN: None     Source Type: Journal    
DOI: 10.1119/1.19457     Document Type: Article
Times cited : (7)

References (13)
  • 3
    • 85037751615 scopus 로고    scopus 로고
    • note
    • In this paper, I follow the statistics literature and denote the quantity γ(j) defined in Eq. (4) as the autocovariance function. In the physics literature, this quantity is often called the autocorrelation function, which properly refers only to the case where the function is normalized such that γ(0) = 1. The definition of both quantities would be slightly different if the mean of the residuals were not zero.
  • 4
    • 85037754883 scopus 로고    scopus 로고
    • The intensity-intensity correlation light-scattering data represent an autocorrelation function, too. This is, of course, a different quantity from the autocovariance of residuals discussed in this paper
    • The intensity-intensity correlation light-scattering data represent an autocorrelation function, too. This is, of course, a different quantity from the autocovariance of residuals discussed in this paper.
  • 5
    • 85037770966 scopus 로고    scopus 로고
    • -1 in the free case
    • -1 in the free case.
  • 6
    • 84948307730 scopus 로고
    • Strongly heteroscedastic nonlinear regression
    • A note of caution: If the y; are nonlinear transforms of normally distributed data, then the errors in y are no longer normal. In such a case, the least-squares fitting algorithm can lead to biased estimates of parameters. One can generalize the algorithm by going back to its starting point based on maximizing the likelihood function. For a discussion of this and related points, see J. R. Macdonald and W. J. Thompson, "Strongly heteroscedastic nonlinear regression," Commun. Stat.-Simul. Comput. 20, 843-886 (1991).
    • (1991) Commun. Stat.-Simul. Comput. , vol.20 , pp. 843-886
    • Macdonald, J.R.1    Thompson, W.J.2
  • 11
    • 0003392225 scopus 로고
    • North-Holland, Amsterdam
    • Other common statistics references for physical scientists include W. T. Eadie, D. Drijard, F. E. James, M. Roos, and B. Sadoulet, Statistical Methods in Experimental Physics (North-Holland, Amsterdam, 1971); L. Lyons, Statistics for Nuclear and Particle Physics (Cambridge U.P., Cambridge, 1986); and G. Cowan, Statistical Data Analysis, with Applications from Particle Physics (Oxford U.P., Oxford, 1998).
    • (1971) Statistical Methods in Experimental Physics
    • Eadie, W.T.1    Drijard, D.2    James, F.E.3    Roos, M.4    Sadoulet, B.5
  • 12
    • 0003988561 scopus 로고
    • Cambridge U.P., Cambridge
    • Other common statistics references for physical scientists include W. T. Eadie, D. Drijard, F. E. James, M. Roos, and B. Sadoulet, Statistical Methods in Experimental Physics (North-Holland, Amsterdam, 1971); L. Lyons, Statistics for Nuclear and Particle Physics (Cambridge U.P., Cambridge, 1986); and G. Cowan, Statistical Data Analysis, with Applications from Particle Physics (Oxford U.P., Oxford, 1998).
    • (1986) Statistics for Nuclear and Particle Physics
    • Lyons, L.1
  • 13
    • 0003730375 scopus 로고    scopus 로고
    • Oxford U.P., Oxford
    • Other common statistics references for physical scientists include W. T. Eadie, D. Drijard, F. E. James, M. Roos, and B. Sadoulet, Statistical Methods in Experimental Physics (North-Holland, Amsterdam, 1971); L. Lyons, Statistics for Nuclear and Particle Physics (Cambridge U.P., Cambridge, 1986); and G. Cowan, Statistical Data Analysis, with Applications from Particle Physics (Oxford U.P., Oxford, 1998).
    • (1998) Statistical Data Analysis, with Applications from Particle Physics
    • Cowan, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.