메뉴 건너뛰기




Volumn 36, Issue 4, 2000, Pages 203-209

The full-degree spanning tree problem

Author keywords

Algorithm; Approximation; Full degree; Graph; NP hardness; Spanning tree

Indexed keywords


EID: 0034393289     PISSN: 00283045     EISSN: None     Source Type: Journal    
DOI: 10.1002/1097-0037(200012)36:4<203::AID-NET1>3.0.CO;2-U     Document Type: Article
Times cited : (13)

References (12)
  • 3
    • 0031186954 scopus 로고    scopus 로고
    • On the approximability of some maximum spanning tree problems
    • [3] G. Galbiati, A. Morzenti, and F. Maffioli, On the approximability of some maximum spanning tree problems, Theor Comput Sci 181 (1997), 107-118.
    • (1997) Theor Comput Sci , vol.181 , pp. 107-118
    • Galbiati, G.1    Morzenti, A.2    Maffioli, F.3
  • 4
    • 0003200192 scopus 로고
    • Computers and intractability: A guide to the theory of NP-completeness
    • San Francisco
    • [4] M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory of NP-completeness, Freeman, San Francisco, 1979.
    • (1979) Freeman
    • Garey, M.R.1    Johnson, D.S.2
  • 8
    • 0023295450 scopus 로고
    • Interpolation theorem for the number of degree-preserving vertices of spanning trees
    • [8] M. Lewinter, Interpolation theorem for the number of degree-preserving vertices of spanning trees, IEEE Trans Circ Syst CAS-34 (1987), 205.
    • (1987) IEEE Trans Circ Syst , vol.CAS-34 , pp. 205
    • Lewinter, M.1
  • 9
    • 0029184961 scopus 로고
    • LEDA: A platform for combinatorial and geometric computing
    • [9] K. Mehlhorn and S. Näher, LEDA: A platform for combinatorial and geometric computing, Commun ACM 38 (1995), 96-102; http://mpi-sb.mpg.de/LEDA/leda.html.
    • (1995) Commun ACM , vol.38 , pp. 96-102
    • Mehlhorn, K.1    Näher, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.