-
8
-
-
85037493848
-
-
note
-
For this reason, all the glass phases we examine should be called in common as vortex glasses or superconducting glasses in nonzero fields. To avoid a confusion on terminology, we will follow in this paper the conventions in literatures and, for instance, call the glass phase due to point disorder as vortex glass (VG).
-
-
-
-
10
-
-
0001407357
-
-
T. Hwa and D. S. Fisher: Phys. Rev. Lett. 72 (1994) 2466; see also D. S. Fisher: Phenomenology and Applications of High Temperature Superconductors ed. K. S. Bedell et al., (Addison-Wesley, MA, 1992).
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 2466
-
-
Hwa, T.1
Fisher, D.S.2
-
12
-
-
21744459173
-
-
note
-
R. Ikeda: J. Phys. Soc. Jpn. 66 (1997) 1603 We note that there are some misprints on directions of arrows in the figures of Fig. 2(c) and 2(d) of this paper. They should be corrected according to Fig. 2(b) there.
-
(1997)
J. Phys. Soc. Jpn.
, vol.66
, pp. 1603
-
-
Ikeda, R.1
-
18
-
-
0000591319
-
-
S. W. Pierson and O. T. Valls: Phys. Rev. B 57 (1998) 8143; See also Fig. 2 in M. J. W. Dodgson, V. B. Gesnkenbein, H. Nordborg and G. Blatter: Phys. Rev. B 57 (1998) 14498. The melting line resulting from their effective London limit (the solid curve in Fig. 2 there) is found to, above 3.5(T), coincide well with the LLL melting line obtained in terms of the same parameter values, implying that the justification argued there of their effective London model can also be regarded as showing that the LLL theory is a quantitatively appropriate description of the tesla range (and hence, of higher fields) in 90K YBCO. See also §4 of ref. 16.
-
(1998)
Phys. Rev. B
, vol.57
, pp. 8143
-
-
Pierson, S.W.1
Valls, O.T.2
-
19
-
-
0001350877
-
-
S. W. Pierson and O. T. Valls: Phys. Rev. B 57 (1998) 8143; See also Fig. 2 in M. J. W. Dodgson, V. B. Gesnkenbein, H. Nordborg and G. Blatter: Phys. Rev. B 57 (1998) 14498. The melting line resulting from their effective London limit (the solid curve in Fig. 2 there) is found to, above 3.5(T), coincide well with the LLL melting line obtained in terms of the same parameter values, implying that the justification argued there of their effective London model can also be regarded as showing that the LLL theory is a quantitatively appropriate description of the tesla range (and hence, of higher fields) in 90K YBCO. See also §4 of ref. 16.
-
(1998)
Phys. Rev. B
, vol.57
, pp. 14498
-
-
Dodgson, M.J.W.1
Gesnkenbein, V.B.2
Nordborg, H.3
Blatter, G.4
-
20
-
-
0001541308
-
-
T. Nattermann: Phys. Rev. Lett. 64 (1990) 2454; T. Giamarchi and P. Le Doussal: Phys. Rev. B 52 (1995) 1242; D. S. Fisher: Phys. Rev. Lett. 78 (1997) 1964.
-
(1990)
Phys. Rev. Lett.
, vol.64
, pp. 2454
-
-
Nattermann, T.1
-
21
-
-
24844466265
-
-
T. Nattermann: Phys. Rev. Lett. 64 (1990) 2454; T. Giamarchi and P. Le Doussal: Phys. Rev. B 52 (1995) 1242; D. S. Fisher: Phys. Rev. Lett. 78 (1997) 1964.
-
(1995)
Phys. Rev. B
, vol.52
, pp. 1242
-
-
Giamarchi, T.1
Le Doussal, P.2
-
22
-
-
0031098792
-
-
T. Nattermann: Phys. Rev. Lett. 64 (1990) 2454; T. Giamarchi and P. Le Doussal: Phys. Rev. B 52 (1995) 1242; D. S. Fisher: Phys. Rev. Lett. 78 (1997) 1964.
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 1964
-
-
Fisher, D.S.1
-
30
-
-
85037496008
-
-
cond-mat/9907355
-
For instance, see H. Kawamura, cond-mat/9907355; A. van Otterlo and T. Zimanyi, unpublished.
-
-
-
Kawamura, H.1
-
31
-
-
85037519600
-
-
unpublished
-
For instance, see H. Kawamura, cond-mat/9907355; A. van Otterlo and T. Zimanyi, unpublished.
-
-
-
Van Otterlo, A.1
Zimanyi, T.2
|