-
1
-
-
0003686368
-
-
MIT Press, Cambridge
-
Dynamic Biological Networks, edited by R. M. Harris-Warrik, E. Marder, A. I. Selverton, and M. Moulins (MIT Press, Cambridge, 1992).
-
(1992)
Dynamic Biological Networks
-
-
Harris-Warrik, R.M.1
Marder, E.2
Selverton, A.I.3
Moulins, M.4
-
2
-
-
0003478288
-
-
Springer, New York
-
See, e.g., J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1983); S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer, New York, 1990).
-
(1983)
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
-
-
Guckenheimer, J.1
Holmes, P.2
-
3
-
-
0003548726
-
-
Springer, New York
-
See, e.g., J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1983); S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer, New York, 1990).
-
(1990)
Introduction to Applied Nonlinear Dynamical Systems and Chaos
-
-
Wiggins, S.1
-
4
-
-
0002144874
-
-
L. D. Landau, C. R. (Dokl.) Acad. Sci. USSR 44, 311 (1944). reproduced in Chaos II, edited by Hao Bai-Lin (World Scientific, Singapore, 1990), p. 115.
-
(1944)
C. R. (Dokl.) Acad. Sci. USSR
, vol.44
, pp. 311
-
-
Landau, L.D.1
-
5
-
-
0002060370
-
-
World Scientific, Singapore
-
L. D. Landau, C. R. (Dokl.) Acad. Sci. USSR 44, 311 (1944). reproduced in Chaos II, edited by Hao Bai-Lin (World Scientific, Singapore, 1990), p. 115.
-
(1990)
Chaos II
, pp. 115
-
-
Bai-Lin, H.1
-
6
-
-
84958274470
-
-
note
-
The torus bifurcation does not permit the superposition with arbitrary phase assumed by Landau in relation to the occurrence moment of the secondary instability.
-
-
-
-
8
-
-
34250451946
-
-
D. Ruelle and F. Takens, Commun. Math. Phys. 20, 167 (1971); S. Newhouse, D. Ruelle, and F. Takens, ibid. 64, 35 (1978).
-
(1971)
Commun. Math. Phys.
, vol.20
, pp. 167
-
-
Ruelle, D.1
Takens, F.2
-
9
-
-
34250278281
-
-
D. Ruelle and F. Takens, Commun. Math. Phys. 20, 167 (1971); S. Newhouse, D. Ruelle, and F. Takens, ibid. 64, 35 (1978).
-
(1978)
Commun. Math. Phys.
, vol.64
, pp. 35
-
-
Newhouse, S.1
Ruelle, D.2
Takens, F.3
-
10
-
-
84958274471
-
-
note
-
Half of the bifurcations occur on each point, if N is odd, while one bifurcation more happens on the initially stable point, if N is even.
-
-
-
-
11
-
-
84958274472
-
-
note
-
A sequence of torus bifurcations initiated from a fixed point is intrinsically related to the successive Hopf bifurcations of that point and the corresponding oscillations are usually based on the same frequencies.
-
-
-
-
12
-
-
84958274473
-
-
note
-
In fact, only one attractor can emerge from the variety of Hopf bifurcations of a saddle-node pair of fixed points but additional attractors may arise from secondary processes.
-
-
-
-
13
-
-
0034228924
-
-
J. Rius, M. Figueras, R. Herrero, F. Pi, G. Orriols, and J. Farjas, Phys. Rev. E 62, 333 (2000).
-
(2000)
Phys. Rev. E
, vol.62
, pp. 333
-
-
Rius, J.1
Figueras, M.2
Herrero, R.3
Pi, F.4
Orriols, G.5
Farjas, J.6
-
15
-
-
0000156535
-
-
R. Herrero, R. Pons, J. Farjas, F. Pi, and G. Orriols, Phys. Rev. E 53, 5627 (1996).
-
(1996)
Phys. Rev. E
, vol.53
, pp. 5627
-
-
Herrero, R.1
Pons, R.2
Farjas, J.3
Pi, F.4
Orriols, G.5
-
16
-
-
0000025107
-
-
J. I. Rosell, J. Farjas, R. Herrero, F. Pi, and G. Orriols, Physica D 85, 509 (1995).
-
(1995)
Physica D
, vol.85
, pp. 509
-
-
Rosell, J.I.1
Farjas, J.2
Herrero, R.3
Pi, F.4
Orriols, G.5
-
17
-
-
0001846324
-
-
J. Farjas, J. I. Rosell, R. Herrero, R. Pons, F. Pi, and G. Orriols, Physica D 95, 107 (1996).
-
(1996)
Physica D
, vol.95
, pp. 107
-
-
Farjas, J.1
Rosell, J.I.2
Herrero, R.3
Pons, R.4
Pi, F.5
Orriols, G.6
-
18
-
-
36749119464
-
-
S. L. McCall, Appl. Phys. Lett. 32, 284 (1978); H. M. Gibbs, S. S. Tang, J. L. Jewell, D. A. Weinberger, and K. Tai, ibid. 41, 221 (1982).
-
(1978)
Appl. Phys. Lett.
, vol.32
, pp. 284
-
-
McCall, S.L.1
-
19
-
-
0001307296
-
-
S. L. McCall, Appl. Phys. Lett. 32, 284 (1978); H. M. Gibbs, S. S. Tang, J. L. Jewell, D. A. Weinberger, and K. Tai, ibid. 41, 221 (1982).
-
(1982)
Appl. Phys. Lett.
, vol.41
, pp. 221
-
-
Gibbs, H.M.1
Tang, S.S.2
Jewell, J.L.3
Weinberger, D.A.4
Tai, K.5
-
21
-
-
0026137715
-
-
J. I. Rosell, F. Pi, F. Boixader, R. Herrero, F. Farjas, and G. Orriols, Opt. Commun. 82, 162 (1991).
-
(1991)
Opt. Commun.
, vol.82
, pp. 162
-
-
Rosell, J.I.1
Pi, F.2
Boixader, F.3
Herrero, R.4
Farjas, F.5
Orriols, G.6
-
22
-
-
0028713930
-
-
R. Herrero, F. Boixader, G. Orriols, J. I. Rosell, and F. Pi, Opt. Commun. 113, 324 (1994).
-
(1994)
Opt. Commun.
, vol.113
, pp. 324
-
-
Herrero, R.1
Boixader, F.2
Orriols, G.3
Rosell, J.I.4
Pi, F.5
-
24
-
-
84958274474
-
-
note
-
The two-dimensional eigenspace and the oscillation frequency of the secondary Hopf bifurcation of the saddle cycle are directly related to those of the first Hopf bifurcation of the fixed point. This implies that the secondary bifurcation will be subcritical.
-
-
-
-
25
-
-
84958274475
-
-
This has been verified by continuously following both periodic orbits
-
This has been verified by continuously following both periodic orbits.
-
-
-
-
27
-
-
84958274476
-
-
note
-
The possibilities of invariant tori generation through sequences of bifurcations initiated from a fixed point are not well known. The theory of universal unfoldings developed for certain low-dimensional degeneracies (Ref. 2) gives precise information for N up to 4, but only some general ideas may be tentatively extrapolated to higher dimensional problems.
-
-
-
-
28
-
-
84958274477
-
-
note
-
Eighty trajectories initiated from different points of the unstable eigenspace of the saddle cycle. The proximity of the initial point to the saddle orbit is chosen such that the error due to the separation between the eigenspace and the invariant manifold is of the same order as the error of the numerical integration. The initial points are taken in 10 temporally equidistant places along the orbit and with 8 different output angles within the two-dimensional eigenspace transverse to the orbit.
-
-
-
|