메뉴 건너뛰기




Volumn 9, Issue 3, 2000, Pages 190-213

Exploiting early sorting and early partitioning for decision support query processing

Author keywords

Decision support systems; Early sorting and partitioning; Hash joins and hash teams; Performance evaluation; Query processing and optimization

Indexed keywords


EID: 0034366484     PISSN: 10668888     EISSN: None     Source Type: Journal    
DOI: 10.1007/s007780000030     Document Type: Article
Times cited : (18)

References (33)
  • 1
    • 0002466838 scopus 로고    scopus 로고
    • Evaluating functional joins along nested reference sets in object-relational and object-oriented databases
    • New York, USA, August
    • Braumandl R., Claussen J., Kemper A. Evaluating functional joins along nested reference sets in object-relational and object-oriented databases. In: Proc. of the Conf. on Very Large Data Bases (VLDB), New York, USA, August 1998, pp. 110-121
    • (1998) Proc. of the Conf. on Very Large Data Bases (VLDB) , pp. 110-121
    • Braumandl, R.1    Claussen, J.2    Kemper, A.3
  • 3
    • 0020763652 scopus 로고
    • Duplicate record elimination in large data files
    • Bitton D., DeWitt D.J. Duplicate record elimination in large data files. ACM Trans. on Database Systems 8(2): 255-265, 1983
    • (1983) ACM Trans. on Database Systems , vol.8 , Issue.2 , pp. 255-265
    • Bitton, D.1    DeWitt, D.J.2
  • 4
    • 0014814325 scopus 로고
    • Space/time trade-offs in hash coding with allowable errors
    • Bloom B. Space/time trade-offs in hash coding with allowable errors. Communications of the ACM 13: 422-426, 1970
    • (1970) Communications of the ACM , vol.13 , pp. 422-426
    • Bloom, B.1
  • 12
    • 0029752925 scopus 로고    scopus 로고
    • Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-total
    • New Orleans, La., USA, February
    • Gray J., Bosworth A., Layman A., Pirahesh H. Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-total. In: Proc. IEEE Conf. on Data Engineering, pp. 152-159, New Orleans, La., USA, February 1996
    • (1996) Proc. IEEE Conf. on Data Engineering , pp. 152-159
    • Gray, J.1    Bosworth, A.2    Layman, A.3    Pirahesh, H.4
  • 15
    • 84941188232 scopus 로고
    • Multi-table joins through bitmapped join indices
    • Oct
    • Graefe G., O'Neil P. Multi-table joins through bitmapped join indices. ACM SIGMOD Record 24(3): 8-11, Oct 1995
    • (1995) ACM SIGMOD Record , vol.24 , Issue.3 , pp. 8-11
    • Graefe, G.1    O'Neil, P.2
  • 16
    • 0027608375 scopus 로고
    • Query evaluation techniques for large databases
    • June
    • Graefe G. Query evaluation techniques for large databases. ACM Computing Surveys 25(2): 73-170, June 1993
    • (1993) ACM Computing Surveys , vol.25 , Issue.2 , pp. 73-170
    • Graefe, G.1
  • 17
    • 0028202001 scopus 로고
    • Sort-merge-join: An idea whose time has(h) passed?
    • Houston, Tex., USA
    • Graefe G. Sort-Merge-Join: An idea whose time has(h) passed? In: Proc. IEEE Conf. on Data Engineering, pp. 406-417, Houston, Tex., USA, 1994
    • (1994) Proc. IEEE Conf. on Data Engineering , pp. 406-417
    • Graefe, G.1
  • 18
    • 0000993046 scopus 로고    scopus 로고
    • Seeking the truth about ad hoc join costs
    • Haas L., Carey M., Livny M., Shukla A. Seeking the truth about ad hoc join costs. The VLDB Journal 6(3): 241-256, 1997
    • (1997) The VLDB Journal , vol.6 , Issue.3 , pp. 241-256
    • Haas, L.1    Carey, M.2    Livny, M.3    Shukla, A.4
  • 21
    • 0002103528 scopus 로고    scopus 로고
    • Iterative dynamic programming: A new class of query optimization algorithms
    • March in press
    • Kossmann D., Stocker K. Iterative dynamic programming: A new class of query optimization algorithms. ACM Trans, on Database Systems 25(1), March 2000, in press
    • (2000) ACM Trans, on Database Systems , vol.25 , Issue.1
    • Kossmann, D.1    Stocker, K.2
  • 22
    • 0008753925 scopus 로고    scopus 로고
    • Grouping and duplicate elimination: Benefits of early aggregation
    • January
    • Larson P.A. Grouping and duplicate elimination: Benefits of early aggregation. Microsoft Technical Report, January 1997. http://www.research.microsoft.com/ palarson/
    • (1997) Microsoft Technical Report
    • Larson, P.A.1
  • 23
    • 84944047846 scopus 로고
    • Grammar-like functional rules for representing query optimization alternatives
    • Chicago, Ill., USA, May
    • Lohman G. Grammar-like functional rules for representing query optimization alternatives. In: Proc. of the ACM SIGMOD Conf. on Management of Data, pp. 18-27, Chicago, Ill., USA, May 1988
    • (1988) Proc. of the ACM SIGMOD Conf. on Management of Data , pp. 18-27
    • Lohman, G.1
  • 24
    • 0033126032 scopus 로고    scopus 로고
    • Fast joins using join indices
    • May
    • Li Z., Ross K.A. Fast joins using join indices. The VLDB Journal 8(1): 1-24, May 1999
    • (1999) The VLDB Journal , vol.8 , Issue.1 , pp. 1-24
    • Li, Z.1    Ross, K.A.2
  • 25
    • 0026826969 scopus 로고
    • Join processing in relational databases
    • March
    • Mishra P., Eich M. Join processing in relational databases. ACM Computing Surveys 24(1): 63-113, March 1992
    • (1992) ACM Computing Surveys , vol.24 , Issue.1 , pp. 63-113
    • Mishra, P.1    Eich, M.2
  • 28
    • 84976660052 scopus 로고
    • Join processing in database systems with large main memories
    • September
    • Shapiro L. Join processing in database systems with large main memories. ACM Trans, on Database Systems 11(9): 239-264, September 1986
    • (1986) ACM Trans, on Database Systems , vol.11 , Issue.9 , pp. 239-264
    • Shapiro, L.1
  • 30
    • 0002056928 scopus 로고    scopus 로고
    • Transaction Processing Performance Council TPC. TPC benchmarks H and R (decision support). Standard Specification, Transaction Processing Performance Council (TPC), October
    • Transaction Processing Performance Council TPC. TPC benchmarks H and R (decision support). Standard Specification, Transaction Processing Performance Council (TPC), October 1999. http://www.tpc.org/
    • (1999)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.