-
1
-
-
0000758750
-
Remarks on self-affine tilings
-
D. Hacon, N. C. Saldanha, and J. J. P. Veerman, “Remarks on self-affine tilings”, Experiment. Math. 3:4 (1994), 317-327.
-
(1994)
Experiment. Math
, vol.3
, Issue.4
, pp. 317-327
-
-
Hacon, D.1
Saldanha, N.C.2
Veerman, J.J.P.3
-
2
-
-
0001265433
-
Fractals and selfsimilarity
-
J. E. Hutchinson, “Fractals and selfsimilarity”, Indiana Univ. Math. J. 30:5 (1981), 713-747.
-
(1981)
Indiana Univ. Math. J
, vol.30
, Issue.5
, pp. 713-747
-
-
Hutchinson, J.E.1
-
4
-
-
0001523338
-
Projecting the one-dimensional Sierpinski gasket
-
R. Kenyon, “Projecting the one-dimensional Sierpinski gasket”, Israel J. Math. 97 (1997), 221-238.
-
(1997)
Israel J. Math
, vol.97
, pp. 221-238
-
-
Kenyon, R.1
-
5
-
-
0347243310
-
Geometry of self-affine tiles, II
-
R. Kenyon, J. Li, R. S. Strichartz, and Y. Wang, “Geometry of self-affine tiles, II”, Indiana Univ. Math. J. 48:1 (1999), 25-42. See http://www.math.gatech.edu/-wang/reprints.html.
-
(1999)
Indiana Univ. Math. J
, vol.48
, Issue.1
, pp. 25-42
-
-
Kenyon, R.1
Li, J.2
Strichartz, R.S.3
Wang, Y.4
-
6
-
-
0002782396
-
The singularity spectrum for general Sierpinski carpets
-
J. F. King, “The singularity spectrum for general Sierpinski carpets”, Adv. Math. 116:1 (1995), 1-11.
-
(1995)
Adv. Math
, vol.116
, Issue.1
, pp. 1-11
-
-
King, J.F.1
-
7
-
-
0030209206
-
Integral self-affine tiles in ℝ, I: Standard and nonstandard digit sets
-
n, I: Standard and nonstandard digit sets”, J. London Math. Soc. (2) 54:1 (1996), 161-179.
-
(1996)
J. London Math. Soc
, vol.54-1
, Issue.2
, pp. 161-179
-
-
Lagarias, J.C.1
Wang, Y.2
-
8
-
-
38248998558
-
Dimension of a family of singular Bernoulli convolutions
-
K.-S. Lau, “Dimension of a family of singular Bernoulli convolutions”, J. Fund. Anal. 116:2 (1993), 335-358.
-
(1993)
J. Fund. Anal
, vol.116
, Issue.2
, pp. 335-358
-
-
Lau, K.-S.1
-
9
-
-
0003252917
-
Measure and category: A survey of the analogies between topological and measure spaces
-
2nd ed, Springer, New York
-
J. C. Oxtoby, Measure and category: A survey of the analogies between topological and measure spaces, 2nd ed., Graduate Texts in Math. 2, Springer, New York, 1980.
-
(1980)
Graduate Texts in Math
, vol.2
-
-
Oxtoby, J.C.1
-
10
-
-
0000922897
-
The Hausdorff dimension of λ-expansions with deleted digits, Trans
-
M. Pollicott and K. Simon, “The Hausdorff dimension of λ-expansions with deleted digits”, Trans. Amer. Math. Soc. 347:3 (1995), 967-983.
-
(1995)
Mer. Math. Soc
, vol.347
, Issue.3
, pp. 967-983
-
-
Pollicott, M.1
Simon, K.2
-
11
-
-
0002546724
-
A class of self-similar fractals with overlap structure
-
H. Rao and Z.-Y. Wen, “A class of self-similar fractals with overlap structure”, Adv. in Appl. Math. 20:1 (1998), 50-72.
-
(1998)
Adv. In Appl. Math
, vol.20
, Issue.1
, pp. 50-72
-
-
Rao, H.1
Wen, Z.-Y.2
-
12
-
-
0000660967
-
On the random series Σ±λ (An Erdős problem)
-
n (an Erdős problem)”, Ann. of Math. (2) 142:3 (1995), 611-625.
-
(1995)
Ann. Of Math
, vol.142-3
, Issue.2
, pp. 611-625
-
-
Solomyak, B.1
-
13
-
-
0000799964
-
Intersecting selfsimilar Cantor sets
-
J. J. P. Veerman, “Intersecting selfsimilar Cantor sets”, Bol. Soc. Brasil. Mat. (N.S.) 26:2 (1995), 167-181.
-
(1995)
Bol. Soc. Brasil. Mat. (N.S.)
, vol.26
, Issue.2
, pp. 167-181
-
-
Veerman, J.J.P.1
-
14
-
-
0001188111
-
Two-dimensional generalizations of Haar bases
-
(Montevideo, 1995), edited by F. Ledrappier, Pitman Res. Notes in Math, Longman, Harlow
-
J. J. P. Veerman, “Two-dimensional generalizations of Haar bases”, pp. 220-235 in International Conference on Dynamical Systems (Montevideo, 1995), edited by F. Ledrappier, Pitman Res. Notes in Math. 362, Longman, Harlow, 1996.
-
(1996)
International Conference on Dynamical Systems
, vol.362
, pp. 220-235
-
-
Veerman, J.J.P.1
-
15
-
-
0032424118
-
Hausdorff dimension of boundaries of self-affine tiles in ℝ
-
n”, Bol. Soc. Mat. Mexicana (3) 4:2 (1998), 159-182.
-
(1998)
Bol. Soc. Mat. Mexicana
, vol.4-2
, Issue.3
, pp. 159-182
-
-
Veerman, J.J.P.1
|