-
1
-
-
0032131487
-
The global linear convergence of a non-interior path-following algorithm for linear complementarity problem
-
J. BURKE AND S. XU, The global linear convergence of a non-interior path-following algorithm for linear complementarity problem, Math. Oper. Res., 23 (1998), pp. 719-734.
-
(1998)
Math. Oper. Res.
, vol.23
, pp. 719-734
-
-
Burke, J.1
Xu, S.2
-
3
-
-
0029206129
-
Smoothing methods for convex inequalities and linear complementarity problems
-
C. CHEN AND O.L. MANGASARIAN, Smoothing methods for convex inequalities and linear complementarity problems, Math. Programming, 71 (1995), pp. 51-69.
-
(1995)
Math. Programming
, vol.71
, pp. 51-69
-
-
Chen, C.1
Mangasarian, O.L.2
-
4
-
-
0345148378
-
On homotopy-smoothing methods for box-constrained variational inequalities
-
X. CHEN AND Y. YE, On homotopy-smoothing methods for box-constrained variational inequalities, SIAM J. Control Optim., 37 (1999), pp. 589-616.
-
(1999)
SIAM J. Control Optim.
, vol.37
, pp. 589-616
-
-
Chen, X.1
Ye, Y.2
-
5
-
-
0003735415
-
-
Academic Press, Boston
-
R.W. COTTLE, J.-S. PANG, AND R.E. STONE, The Linear Complementarity Problem, Academic Press, Boston, 1992.
-
(1992)
The Linear Complementarity Problem
-
-
Cottle, R.W.1
Pang, J.-S.2
Stone, R.E.3
-
6
-
-
0032657647
-
Beyond monotonicity in regularization methods for nonlinear complementarity problems
-
F. FACCHINEI AND C. KANZOW, Beyond monotonicity in regularization methods for nonlinear complementarity problems, SIAM J. Control Optim., 37 (1999), pp. 1150-1161.
-
(1999)
SIAM J. Control Optim.
, vol.37
, pp. 1150-1161
-
-
Facchinei, F.1
Kanzow, C.2
-
7
-
-
0004080645
-
-
Tech. report, Universitá di Roma "La Sapienza," Dipartmento di Informatica e Sistemistica, Via Buonarroti, Roma, Italy
-
F. FACCHINEI AND J.-S. PANG, Total Stability of Variational Inequalities, Tech. report, Universitá di Roma "La Sapienza," Dipartmento di Informatica e Sistemistica, Via Buonarroti, Roma, Italy, 1998.
-
(1998)
Total Stability of Variational Inequalities
-
-
Facchinei, F.1
Pang, J.-S.2
-
8
-
-
0002579086
-
Smoothing of mixed complementarity problems
-
M.C. Ferris and J.S. Pang, eds., SIAM, Philadelphia, PA
-
S.A. GABRIEL AND J.J. MORÉ, Smoothing of mixed complementarity problems, in Complementarity and Variational Problems: State of the Art, M.C. Ferris and J.S. Pang, eds., SIAM, Philadelphia, PA, 1996, pp. 105-116.
-
(1996)
Complementarity and Variational Problems: State of the Art
, pp. 105-116
-
-
Gabriel, S.A.1
Moré, J.J.2
-
9
-
-
0030517292
-
Some noninterior continuation methods for linear complementarity problems
-
C. KANZOW, Some noninterior continuation methods for linear complementarity problems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 851-868.
-
(1996)
SIAM J. Matrix Anal. Appl.
, vol.17
, pp. 851-868
-
-
Kanzow, C.1
-
10
-
-
0001217295
-
Homotopy continuation methods for nonlinear complementarity problems
-
M. KOJIMA, N. MEGIDDO, AND T. NOMA, Homotopy continuation methods for nonlinear complementarity problems, Math. Oper. Res., 16 (1991), pp. 754-774.
-
(1991)
Math. Oper. Res.
, vol.16
, pp. 754-774
-
-
Kojima, M.1
Megiddo, N.2
Noma, T.3
-
11
-
-
0003212154
-
A unified approach to interior point algorithms for linear complementarity problems
-
Springer-Verlag, New York
-
M. KOJIMA, N. MEGIDDO, T. NOMA, AND A. YOSHISE, A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems, Lecture Notes in Computer Science 538, Springer-Verlag, New York, 1991.
-
(1991)
Lecture Notes in Computer Science
, vol.538
-
-
Kojima, M.1
Megiddo, N.2
Noma, T.3
Yoshise, A.4
-
12
-
-
0027911179
-
A little theorem of the big M in interior point algorithms
-
M. KOJIMA, S. MIZUNO, AND A. YOSHISE, A little theorem of the big M in interior point algorithms, Math. Programming, 59 (1993), pp. 361-375.
-
(1993)
Math. Programming
, vol.59
, pp. 361-375
-
-
Kojima, M.1
Mizuno, S.2
Yoshise, A.3
-
15
-
-
0007546250
-
0-functions
-
0-functions, SIAM J. Optim., 10 (1999), pp. 315-330.
-
(1999)
SIAM J. Optim.
, vol.10
, pp. 315-330
-
-
Qi, H.-D.1
-
16
-
-
0004039976
-
-
Research report, Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore
-
0-Function in Box Variational Inequality Problems, Research report, Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, 1997.
-
(1997)
0-function in Box Variational Inequality Problems
-
-
Ravindran, G.1
Gowda, M.S.2
-
17
-
-
0000056025
-
Generalized equations and their solutions. I
-
S. ROBINSON, Generalized equations and their solutions. I, Math. Programming Stud., 10 (1979), pp. 128-141.
-
(1979)
Math. Programming Stud.
, vol.10
, pp. 128-141
-
-
Robinson, S.1
-
18
-
-
0032682238
-
A regularized Newton method for solving nonlinear complementarity problems
-
D. SUN, A regularized Newton method for solving nonlinear complementarity problems, Appl. Math. Optim., 40 (1999), pp. 315-339.
-
(1999)
Appl. Math. Optim.
, vol.40
, pp. 315-339
-
-
Sun, D.1
-
19
-
-
0002672769
-
0-complementarity problem
-
M. Fukushima and L. Qi, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands
-
0-complementarity problem, in Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, M. Fukushima and L. Qi, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 371-379.
-
(1998)
Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods
, pp. 371-379
-
-
Sznajder, R.1
Gowda, M.S.2
-
20
-
-
0007554566
-
On homogeneous and self-dual algorithms for LCP
-
Y. YE, On homogeneous and self-dual algorithms for LCP, Math. Programming, 76 (1997), pp. 211-222.
-
(1997)
Math. Programming
, vol.76
, pp. 211-222
-
-
Ye, Y.1
|