-
1
-
-
0008732959
-
-
Italian Taormina, Univ. Roma "La Sapienza", Rome
-
C. Baiocchi, F. Brezzi, Stabilization of unstable numerical methods, Current problems of analysis and mathematical physics (Italian) (Taormina, 1992), Univ. Roma "La Sapienza", Rome, 1993, pp. 59-63.
-
(1992)
Stabilization of Unstable Numerical Methods, Current Problems of Analysis and Mathematical Physics
, pp. 59-63
-
-
Baiocchi, C.1
Brezzi, F.2
-
2
-
-
0000616562
-
Weighted a posteriori error control in FE methods
-
ENUMATH-95, Paris, 18-22 September 1995, H.G. Bock et al. (Eds.), World Scientific, Singapore
-
R. Becker, R. Rannacher, Weighted a posteriori error control in FE methods, ENUMATH-95, Paris, 18-22 September 1995, in: H.G. Bock et al. (Eds.), Proc. ENUMATH-97, World Scientific, Singapore, 1998, pp. 621-637.
-
(1998)
Proc. ENUMATH-97
, pp. 621-637
-
-
Becker, R.1
Rannacher, R.2
-
3
-
-
0030383153
-
A feed-back approach to error control in finite element methods: Basic analysis and examples
-
R. Becker, R. Rannacher, A feed-back approach to error control in finite element methods: basic analysis and examples, East-West J. Numer. Math 4 (1996) 237-264.
-
(1996)
East-West J. Numer. Math
, vol.4
, pp. 237-264
-
-
Becker, R.1
Rannacher, R.2
-
5
-
-
0009522795
-
Introduction to adaptive methods for differential equations
-
K. Eriksson, D. Estep, P. Hansbo, C. Johnson, Introduction to adaptive methods for differential equations, Acta Numerica, 1995, 105-159.
-
(1995)
Acta Numerica
, pp. 105-159
-
-
Eriksson, K.1
Estep, D.2
Hansbo, P.3
Johnson, C.4
-
6
-
-
0033436922
-
A posteriori error analysis for numerical approximations of Friedrichs systems
-
P. Houston, J. Mackenzie, E. Süli, G. Warnecke, A posteriori error analysis for numerical approximations of Friedrichs systems, Numer. Math. 82 (1999) 409-432.
-
(1999)
Numer. Math.
, vol.82
, pp. 409-432
-
-
Houston, P.1
Mackenzie, J.2
Süli, E.3
Warnecke, G.4
-
7
-
-
0006299334
-
-
Oxford University Computing Laboratory, Research Report NA-99/18, submitted for publication
-
P. Houston, E. Süli, Stabilised hp-finite element approximation of partial differential equations with nonnegative characteristic form, Oxford University Computing Laboratory, Research Report NA-99/18, 1999, submitted for publication.
-
(1999)
Stabilised Hp-finite Element Approximation of Partial Differential Equations with Nonnegative Characteristic Form
-
-
Houston, P.1
Süli, E.2
-
8
-
-
0006351801
-
Local mesh design for the numerical solution of hyperbolic problems
-
M. Baines (Ed.), ICFD
-
P. Houston, E. Süli, Local mesh design for the numerical solution of hyperbolic problems, in: M. Baines (Ed.), Numerical Methods for Fluid Dynamics VI, ICFD, 1998, pp. 17-30.
-
(1998)
Numerical Methods for Fluid Dynamics
, vol.6
, pp. 17-30
-
-
Houston, P.1
Süli, E.2
-
12
-
-
0039774368
-
A posteriori error estimation in least-squares stabilized finite element schemes
-
R. Rannacher, A posteriori error estimation in least-squares stabilized finite element schemes, Comp. Methods Appl. Mech. Engrg. 166 (1998) 99-114.
-
(1998)
Comp. Methods Appl. Mech. Engrg.
, vol.166
, pp. 99-114
-
-
Rannacher, R.1
-
13
-
-
0000991320
-
Adaptive finite element methods
-
NATO-Summer School, Antalya, 9-21 August 1998, H. Bulgak and C. Zenger (Eds.), Error Control and Adaptivity in Scientific Computing, Kluwer Academic Publishers, Dordrecht
-
R. Rannacher, Adaptive finite element methods, NATO-Summer School, Antalya, 9-21 August 1998, in: H. Bulgak and C. Zenger (Eds.), Error Control and Adaptivity in Scientific Computing, NATO Science Series: C Mathematical and Physical Sciences 536, Kluwer Academic Publishers, Dordrecht, 1999, pp. 247-278.
-
(1999)
NATO Science Series: C Mathematical and Physical Sciences
, vol.536
, pp. 247-278
-
-
Rannacher, R.1
-
14
-
-
84980139785
-
2 is a continuable initial condition for Kreiss' mixed problems
-
2 is a continuable initial condition for Kreiss' mixed problems, Comm. Pure Appl. Math. 25 (1972) 265-285.
-
(1972)
Comm. Pure Appl. Math.
, vol.25
, pp. 265-285
-
-
Rauch, J.1
-
15
-
-
0002885640
-
A posteriori error analysis and adaptivity for finite element approximations of hyperbolic problems
-
D. Kröner et al. (Eds.), An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, Springer, Berlin
-
E. Süli, A posteriori error analysis and adaptivity for finite element approximations of hyperbolic problems, in: D. Kröner et al. (Eds.), An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, Lecture Notes in Computational Science and Engineering 5, Springer, Berlin, 1998, pp. 123-194.
-
(1998)
Lecture Notes in Computational Science and Engineering
, vol.5
, pp. 123-194
-
-
Süli, E.1
|