-
1
-
-
84951612733
-
Theorie der zöpfe
-
1. Artin, E., Theorie der Zöpfe, Hamburg Abh. 4 (1925), 47-72
-
(1925)
Hamburg Abh.
, vol.4
, pp. 47-72
-
-
Artin, E.1
-
2
-
-
0001041430
-
The Burau representation is not faithful for n ≥ 5
-
2. Bigelow, S., The Burau representation is not faithful for n ≥ 5, Geom. Topology 3 (1999), 397-404
-
(1999)
Geom. Topology
, vol.3
, pp. 397-404
-
-
Bigelow, S.1
-
3
-
-
0001131295
-
A new approach to the word and conjugacy problems in the braid groups
-
3. Birman, J., Ki Hyoung Ko, Sang Jin Lee, A new approach to the word and conjugacy problems in the braid groups, Adv. Math. 139 (1998), 322-353
-
(1998)
Adv. Math.
, vol.139
, pp. 322-353
-
-
Birman, J.1
Ko, K.H.2
Lee, S.J.3
-
7
-
-
52449144514
-
Über zopfgruppen und gleichsinnig verdrillte verkettungen
-
7. Burau, W., Über Zopfgruppen und gleichsinnig verdrillte Verkettungen, Abh. Math. Sem. Hanischen Univ. 11 (1936), 171-178
-
(1936)
Abh. Math. Sem. Hanischen Univ.
, vol.11
, pp. 171-178
-
-
Burau, W.1
-
8
-
-
0003848050
-
-
Jones and Bartlet
-
8. Cannon, J.W., D.B.A. Epstein, D.F. Holt, S.V.F. Levy, M.S. Paterson, W.P. Thurston, Word processing in group theory, Jones and Bartlet, 1992
-
(1992)
Word Processing in Group Theory
-
-
Cannon, J.W.1
Epstein, D.B.A.2
Holt, D.F.3
Levy, S.V.F.4
Paterson, M.S.5
Thurston, W.P.6
-
9
-
-
0001473908
-
Geodesic automation and growth functions for Artin groups of finite type
-
9. Charney, R., Geodesic automation and growth functions for Artin groups of finite type. Math. Ann. 301 (1995), 307-324
-
(1995)
Math. Ann.
, vol.301
, pp. 307-324
-
-
Charney, R.1
-
11
-
-
0000650424
-
Les immeubles des groupes de tresses généralisés
-
11. Deligne, P., Les immeubles des groupes de tresses généralisés, Invent, math. 17 (1972), 273-302
-
(1972)
Invent, Math.
, vol.17
, pp. 273-302
-
-
Deligne, P.1
-
12
-
-
0000136620
-
On the linearity of automorphism groups of free groups
-
12. Dyer, J.L., E. Formanek, E.K. Grossman, On the linearity of automorphism groups of free groups, Arch. Math. 38 (1982), 404-409
-
(1982)
Arch. Math.
, vol.38
, pp. 404-409
-
-
Dyer, J.L.1
Formanek, E.2
Grossman, E.K.3
-
13
-
-
0001543830
-
The automorphism group of a free group is not linear
-
13. Formanek, E., C. Procesi, The automorphism group of a free group is not linear, J. Algebra 149, no. 2 (1992), 494-499
-
(1992)
J. Algebra
, vol.149
, Issue.2
, pp. 494-499
-
-
Formanek, E.1
Procesi, C.2
-
14
-
-
0039349071
-
The braid group and other groups
-
14. Garside, F.A., The braid group and other groups, Quart. J. Math. Oxford (2), 20 (1969), 235-254
-
(1969)
Quart. J. Math. Oxford
, vol.20
, Issue.2
, pp. 235-254
-
-
Garside, F.A.1
-
15
-
-
0002642275
-
Band-generator presentation for the 4-braid group
-
Special issue on braid groups and related topics, Jerusalem
-
15. Kang Eun Sook, Ki Hyoung Ko, Sang Jin Lee, Band-generator presentation for the 4-braid group. Special issue on braid groups and related topics, Jerusalem, 1995, Topology Appl. 78 (1997), no. 1-2, 39-60
-
(1995)
Topology Appl.
, vol.78
, Issue.1-2
, pp. 39-60
-
-
Sook, K.E.1
Ko, K.H.2
Lee, S.J.3
-
16
-
-
0001864102
-
Homological representations of the Hecke algebra
-
16. Lawrence, R.J., Homological representations of the Hecke algebra, Commun. Math. Phys. 135 (1990), 141-191
-
(1990)
Commun. Math. Phys.
, vol.135
, pp. 141-191
-
-
Lawrence, R.J.1
-
17
-
-
38249002252
-
The Burau representation is not faithful for n ≥ 6
-
17. Long, D.D., M. Paton, The Burau representation is not faithful for n ≥ 6, Topology 32 (1993), no. 2, 439-447
-
(1993)
Topology
, vol.32
, Issue.2
, pp. 439-447
-
-
Long, D.D.1
Paton, M.2
-
18
-
-
0033130574
-
A note on words in braid monoids
-
18. Michel, J., A note on words in braid monoids, J. Algebra 215 (1999), no. 1, 366-377
-
(1999)
J. Algebra
, vol.215
, Issue.1
, pp. 366-377
-
-
Michel, J.1
-
19
-
-
84967710268
-
n is unfaithful for large n
-
n is unfaithful for large n, Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 2, 379-384
-
(1991)
Bull. Amer. Math. Soc. (N.S.)
, vol.25
, Issue.2
, pp. 379-384
-
-
Moody, J.A.1
-
20
-
-
0000813451
-
The set of minimal braids is co-NP-complete
-
20. Paterson, M.S., A.A. Razborov, The set of minimal braids is co-NP-complete, J. Algorithms 12 (1991), 393-408
-
(1991)
J. Algorithms
, vol.12
, pp. 393-408
-
-
Paterson, M.S.1
Razborov, A.A.2
|