메뉴 건너뛰기




Volumn 104, Issue 1, 2000, Pages 109-120

Local convexification of the Lagrangian function in nonconvex optimization

Author keywords

Lagrangian function; Local convexification; Local duality; Nonconvex optimization; p power formulation

Indexed keywords

CONVEXIFICATION; DUALITY THEORY; LAGRANGIAN FUNCTIONS; LOCAL CONVEXIFICATION; LOCAL CONVEXITIES; LOCAL DUALITY; NONCONVEX OPTIMIZATION; NONCONVEX-OPTIMIZATION; P-POWER FORMULATION; POWER;

EID: 0034349450     PISSN: 00223239     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1004628822745     Document Type: Article
Times cited : (33)

References (5)
  • 1
    • 0000557604 scopus 로고
    • A duality theorem for nonlinear programming
    • 1. WOLFE, P., A Duality Theorem for Nonlinear Programming, Quarterly of Applied Mathematics, Vol. 19, pp. 239-244, 1961.
    • (1961) Quarterly of Applied Mathematics , vol.19 , pp. 239-244
    • Wolfe, P.1
  • 3
    • 21844506739 scopus 로고
    • Zero duality gap for a class of nonconvex optimization problems
    • 3. Li, D., Zero Duality Gap for a Class of Nonconvex Optimization Problems, Journal of Optimization Theory and Applications, Vol. 85, pp. 309-324, 1995.
    • (1995) Journal of Optimization Theory and Applications , vol.85 , pp. 309-324
    • Li, D.1
  • 4
    • 0002599488 scopus 로고    scopus 로고
    • Saddle-point generation in nonlinear nonconvex optimization
    • 4. Li, D., Saddle-Point Generation in Nonlinear Nonconvex Optimization, Nonlinear Analysis, Vol. 30, pp. 4339-4344, 1997.
    • (1997) Nonlinear Analysis , vol.30 , pp. 4339-4344
    • Li, D.1
  • 5
    • 0031536482 scopus 로고    scopus 로고
    • Local saddle points and convexification for nonconvex optimization problems
    • 5. Xu, Z. K., Local Saddle Points and Convexification for Nonconvex Optimization Problems, Journal of Optimization Theory and Applications, Vol. 94, pp. 739-746, 1997.
    • (1997) Journal of Optimization Theory and Applications , vol.94 , pp. 739-746
    • Xu, Z.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.