-
2
-
-
0004041275
-
-
Prentice Hall, Englewood Cliffs, New Jersey
-
2. DENNIS, J. E., and SCHNABLE, R. B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, Englewood Cliffs, New Jersey, 1983.
-
(1983)
Numerical Methods for Unconstrained Optimization and Nonlinear Equations
-
-
Dennis, J.E.1
Schnable, R.B.2
-
3
-
-
0004240547
-
-
Academic Press, London, England
-
3. GILL, P. E., MURRAY, W., and WRIGHT, M. H., Practical Optimization Academic Press, London, England, 1981.
-
(1981)
Practical Optimization
-
-
Gill, P.E.1
Murray, W.2
Wright, M.H.3
-
4
-
-
17444369099
-
-
Rutherford Appleton Laboratory, Chilton, England
-
4. CONN, A. R., GOULD, N. I. M., and TOINT, P. L., Numerical Experiments will the LANCELOT Package (Release A) for Large-Scale Nonlinear Optimization Technical Report 92-075, Rutherford Appleton Laboratory, Chilton, England 1992.
-
(1992)
Numerical Experiments Will the Lancelot Package (Release A) for Large-Scale Nonlinear Optimization Technical Report 92-075
-
-
Conn, A.R.1
Gould, N.I.M.2
Toint, P.L.3
-
5
-
-
0003725780
-
Computing a search direction for large-scale linearly constrained nonlinear optimization calculations
-
CERFACS Toulouse, France
-
5. ARIOLI, M., CHAN, T. F., DUFF, I. S., GOULD, N. I. M., and REID, J. K. Computing a Search Direction for Large-Scale Linearly Constrained Nonlinear Optimization Calculations, Technical Report TR/PA/93/94, CERFACS Toulouse, France, 1993.
-
(1993)
Technical Report TR/PA/93/94
-
-
Arioli, M.1
Chan, T.F.2
Duff, I.S.3
Gould, N.I.M.4
Reid, J.K.5
-
6
-
-
85037800139
-
A preconditioned Newton method for large scale optimization
-
Albi, France
-
6. BOUARICHA, A., and MORE, J. J., A Preconditioned Newton Method for Large Scale Optimization, Paper Presented at the Workshop on Linear Algebra in Optimization, Albi, France, 1996.
-
(1996)
Workshop on Linear Algebra in Optimization
-
-
Bouaricha, A.1
More, J.J.2
-
7
-
-
0027544412
-
Nonmonotonic trust-region algorithm
-
7. DENG, N. Y., XIAO, Y., and ZHOU, F. J., Nonmonotonic Trust-Region Algorithm, Journal of Optimization Theory and Applications, Vol. 76, pp. 259-285 1993.
-
(1993)
Journal of Optimization Theory and Applications
, vol.76
, pp. 259-285
-
-
Deng, N.Y.1
Xiao, Y.2
Zhou, F.J.3
-
8
-
-
0023963344
-
Numerical experience with the truncated Newton method for unconstrained optimization
-
8. DIXON, L. C. W., and PRICE, R. C., Numerical Experience with the Truncated Newton Method for Unconstrained Optimization, Journal of Optimization Theory and Applications, Vol. 56, pp. 245-255, 1988.
-
(1988)
Journal of Optimization Theory and Applications
, vol.56
, pp. 245-255
-
-
Dixon, L.C.W.1
Price, R.C.2
-
9
-
-
0003176174
-
Choosing the forcing terms in an inexact Newton method
-
9. EISENSTAT, S. C., and WALKER, H. F., Choosing the Forcing Terms in an Inexact Newton Method, SIAM Journal on Scientific Computing, Vol. 17 pp. 33-46, 1996.
-
(1996)
SIAM Journal on Scientific Computing
, vol.17
, pp. 33-46
-
-
Eisenstat, S.C.1
Walker, H.F.2
-
11
-
-
0003456155
-
Large-scale unconstrained optimization
-
Northwestern University
-
11. NOCEDAL, S. G., Large-Scale Unconstrained Optimization, DEECS Report, Northwestern University, 1996.
-
(1996)
DEECS Report
-
-
Nocedal, S.G.1
-
12
-
-
0000305846
-
The conjugate gradient method and trust regions in large-scale optimization
-
12. STEIHAUG, T., The Conjugate Gradient Method and Trust Regions in Large-Scale Optimization, SIAM Journal on Numerical Analysis, Vol. 20, pp. 626-637, 1983.
-
(1983)
SIAM Journal on Numerical Analysis
, vol.20
, pp. 626-637
-
-
Steihaug, T.1
-
13
-
-
0002633896
-
Toward an efficient sparsity-exploiting Newton method for minimization
-
Edited by I. S. Duff, Academic Press, London, England
-
13. TOINT, P. L., Toward an Efficient Sparsity-Exploiting Newton Method for Minimization, Sparse Matrices and Their Uses, Edited by I. S. Duff, Academic Press, London, England, pp. 57-88, 1981.
-
(1981)
Sparse Matrices and their Uses
, pp. 57-88
-
-
Toint, P.L.1
-
15
-
-
0001636044
-
Can Newton method be surpassed?
-
15. DENG, N. Y., and WANG, Z. Z., Can Newton Method Be Surpassed?, Chinese Science Bulletin, Vol. 44, pp. 132-134, 1999.
-
(1999)
Chinese Science Bulletin
, vol.44
, pp. 132-134
-
-
Deng, N.Y.1
Wang, Z.Z.2
-
16
-
-
0003602606
-
-
Academic Press, London, England
-
16. ORTEGA, J. M., and RHEINBOLDT, W. C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, London, England, 1970.
-
(1970)
Iterative Solution of Nonlinear Equations in Several Variables
-
-
Ortega, J.M.1
Rheinboldt, W.C.2
-
17
-
-
0000746005
-
Inexact Newton method
-
17. DEMBO, R., EISENSTAT, S., and STEIHUAG, T., Inexact Newton Method, SIAM Journal on Numerical Analysis, Vol. 19, pp. 400-408, 1982.
-
(1982)
SIAM Journal on Numerical Analysis
, vol.19
, pp. 400-408
-
-
Dembo, R.1
Eisenstat, S.2
Steihuag, T.3
-
18
-
-
0004100224
-
-
Cambridge University Press, Cambridge, England
-
18. AXELSSON, O., Iterative Solution Method, Cambridge University Press, Cambridge, England, 1996.
-
(1996)
Iterative Solution Method
-
-
Axelsson, O.1
-
19
-
-
85037792736
-
Newton method can be beaten
-
University of Bergamo, Bergamo, Italy
-
19. DENG, N. Y., and WANG, Z. Z., Newton Method Can Be Beaten, Quaderno DMSIA 9, University of Bergamo, Bergamo, Italy, 1998.
-
(1998)
Quaderno DMSIA
, vol.9
-
-
Deng, N.Y.1
Wang, Z.Z.2
-
20
-
-
0001810214
-
The conjugate gradient method for linear and nonlinear operator equations
-
20. DANIEL, J. W., The Conjugate Gradient Method for Linear and Nonlinear Operator Equations, SIAM Journal on Numerical Analysis, Vol. 4, pp. 10-26, 1967.
-
(1967)
SIAM Journal on Numerical Analysis
, vol.4
, pp. 10-26
-
-
Daniel, J.W.1
|