-
1
-
-
0000782811
-
The geometry of the master equation and topological quantum field theory
-
hep-th/9502010
-
1. Alexandrov, M., Kontsevich, M., Schwarz, A. and Zabolonsky, O.: The geometry of the master equation and topological quantum field theory. Int. J. Mod. Phys. A12, 1405-1430 (1997); hep-th/9502010
-
(1997)
Int. J. Mod. Phys.
, vol.A12
, pp. 1405-1430
-
-
Alexandrov, M.1
Kontsevich, M.2
Schwarz, A.3
Zabolonsky, O.4
-
2
-
-
21344494005
-
Batalin-Vilkovisky algebras and two-dimensional topological field theories
-
hep-th/9212043
-
2. Getzler, E.: Batalin-Vilkovisky algebras and two-dimensional topological field theories. Commun. Math. Phys. 159, 265-285 (1994); hep-th/9212043
-
(1994)
Commun. Math. Phys.
, vol.159
, pp. 265-285
-
-
Getzler, E.1
-
4
-
-
0000096362
-
A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds
-
4. Kodaira, K.: A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds. Ann. Math. 75, 146-162 (1962)
-
(1962)
Ann. Math.
, vol.75
, pp. 146-162
-
-
Kodaira, K.1
-
7
-
-
0031527686
-
Existence and geometry of legendre moduli spaces
-
7. Merkulov, S.A.: Existence and geometry of Legendre moduli spaces. Math. Z. 226 , 211-265 (1997)
-
(1997)
Math. Z.
, vol.226
, pp. 211-265
-
-
Merkulov, S.A.1
-
9
-
-
0000526951
-
Geometry of Batalin-Vilkovisky quantization
-
hep-th 9205088
-
9. Schwarz, A.: Geometry of Batalin-Vilkovisky quantization. Commun. Math. Phys. 155, 249-260 (1993); hep-th 9205088
-
(1993)
Commun. Math. Phys.
, vol.155
, pp. 249-260
-
-
Schwarz, A.1
-
10
-
-
14244269501
-
Semiclassical approximation in Batalin-Vilkovisky formalism
-
hep-th/9210115
-
10. Schwarz, A.: Semiclassical approximation in Batalin-Vilkovisky formalism. Commun. Math. Phys. 158, 265-285 (1994); hep-th/9210115
-
(1994)
Commun. Math. Phys.
, vol.158
, pp. 265-285
-
-
Schwarz, A.1
-
11
-
-
0030580240
-
Mirror symmetry is T-duality
-
11. Strominger, A., Yau, S.-T. and Zaslow, E.: Mirror symmetry is T-duality. Nucl. Phys. B 479, 243-259 (1996)
-
(1996)
Nucl. Phys. B
, vol.479
, pp. 243-259
-
-
Strominger, A.1
Yau, S.-T.2
Zaslow, E.3
-
13
-
-
0000513682
-
A note on the antibracket formalism
-
13. Witten, E.: A note on the antibracket formalism. Mod. Phys. Lett. A5, 487 (1990)
-
(1990)
Mod. Phys. Lett.
, vol.A5
, pp. 487
-
-
Witten, E.1
|