메뉴 건너뛰기




Volumn 20, Issue 1, 2000, Pages 99-121

ε-uniform schemes with high-order time-accuracy for parabolic singular perturbation problems

Author keywords

Defect correction; Higher order time accuracy schemes; Parabolic pdes; uniform convergence

Indexed keywords

DISCRETE EVENT SIMULATION; MESH GENERATION;

EID: 0034348728     PISSN: 02724979     EISSN: None     Source Type: Journal    
DOI: 10.1093/imanum/20.1.99     Document Type: Article
Times cited : (86)

References (15)
  • 2
    • 0002914774 scopus 로고    scopus 로고
    • Discrete approximations for singularly perturbed boundary value problems with parabolic layers, I
    • FARRELL, P. A., HEMKER, P. W., & SHISHKIN, G. I. 1996a Discrete approximations for singularly perturbed boundary value problems with parabolic layers, I. J. Comput. Math. 14, 71-97.
    • (1996) J. Comput. Math. , vol.14 , pp. 71-97
    • Farrell, P.A.1    Hemker, P.W.2    Shishkin, G.I.3
  • 3
    • 0000392267 scopus 로고    scopus 로고
    • Discrete approximations for singularly perturbed boundary value problems with parabolic layers, II
    • FARRELL, P. A., HEMKER, P. W., & SHISHKIN, G. I. 1996b Discrete approximations for singularly perturbed boundary value problems with parabolic layers, II. J. Comput. Math. 14, 183-194.
    • (1996) J. Comput. Math. , vol.14 , pp. 183-194
    • Farrell, P.A.1    Hemker, P.W.2    Shishkin, G.I.3
  • 4
    • 0000517998 scopus 로고    scopus 로고
    • Discrete approximations for singularly perturbed boundary value problems with parabolic layers, III
    • FARRELL, P. A., HEMKER, P. W., & SHISHKIN, G. I. 1996c Discrete approximations for singularly perturbed boundary value problems with parabolic layers, III. J. Comput. Math. 14, 273-290.
    • (1996) J. Comput. Math. , vol.14 , pp. 273-290
    • Farrell, P.A.1    Hemker, P.W.2    Shishkin, G.I.3
  • 5
    • 0001372974 scopus 로고    scopus 로고
    • A uniformly convergent finite difference scheme for a singularly perturbed semilinear equation
    • FARRELL, P. A., MILLER, J. J. H., O'RIORDAN, E., & SHISHKIN, G. I. 1996d A uniformly convergent finite difference scheme for a singularly perturbed semilinear equation. SIAM J. Numer. Anal. 33, 1135-1149.
    • (1996) SIAM J. Numer. Anal. , vol.33 , pp. 1135-1149
    • Farrell, P.A.1    Miller, J.J.H.2    O'Riordan, E.3    Shishkin, G.I.4
  • 6
    • 0002387165 scopus 로고
    • On a class of singularly perturbed boundary value problems for which an adaptive mesh technique is necessary
    • (D. Bainov and V. Covachev, eds). VSP, International Science Publishers
    • HEMKER, P. W. & SHISHKIN, G. I. 1994 On a class of singularly perturbed boundary value problems for which an adaptive mesh technique is necessary. Proc. Second Int. Colloquium on Numerical Analysis (D. Bainov and V. Covachev, eds). VSP, International Science Publishers, pp 83-92.
    • (1994) Proc. Second Int. Colloquium on Numerical Analysis , pp. 83-92
    • Hemker, P.W.1    Shishkin, G.I.2
  • 7
    • 0002240887 scopus 로고    scopus 로고
    • The use of defect correction for the solution of parabolic singular perturbation problems
    • HEMKER, P. W., SHISHKIN, G. I., & SHISHKINA, L. P. 1997 The use of defect correction for the solution of parabolic singular perturbation problems. Z. Angewandte Mathematik Mechanik 76, 59-74.
    • (1997) Z. Angewandte Mathematik Mechanik , vol.76 , pp. 59-74
    • Hemker, P.W.1    Shishkin, G.I.2    Shishkina, L.P.3
  • 13
    • 0000789350 scopus 로고
    • Difference scheme on a non-uniform grid for the differential equation with a small parameter at the highest derivative
    • in Russian
    • SHISHKIN, G. I. 1983 Difference scheme on a non-uniform grid for the differential equation with a small parameter at the highest derivative. Zh. Vychisl. Mat. Mat. Fiz. 23, 609-619 (in Russian).
    • (1983) Zh. Vychisl. Mat. Mat. Fiz. , vol.23 , pp. 609-619
    • Shishkin, G.I.1
  • 14
    • 0002319597 scopus 로고
    • Approximation of solutions to singularly perturbed boundary value problems with corner boundary layers
    • in Russian
    • SHISHKIN, G. I. 1987 Approximation of solutions to singularly perturbed boundary value problems with corner boundary layers. Zh. Vychisl. Mat. Mat. Fiz. 27, 1360-1374 (in Russian).
    • (1987) Zh. Vychisl. Mat. Mat. Fiz. , vol.27 , pp. 1360-1374
    • Shishkin, G.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.