-
1
-
-
0001128796
-
Numerical continuation methods: An introduction
-
Springer, Berlin
-
E. L. Allgower and K. Georg, Numerical continuation methods: an introduction, Springer Ser. Comput. Math. 13, Springer, Berlin, 1990.
-
(1990)
Springer Ser. Comput. Math
, vol.13
-
-
Allgower, E.L.1
Georg, K.2
-
2
-
-
70350662980
-
Numerical path following
-
(Part 2), edited by P. G. Ciarlet and J. L. Lions, North-Holland, Amsterdam
-
E. L. Allgower and K. Georg, “Numerical path following”, pp. 3-207 in Handbook of numerical analysis, V: Techniques of scientific computing (Part 2), edited by P. G. Ciarlet and J. L. Lions, North-Holland, Amsterdam, 1997.
-
(1997)
In Handbook of Numerical Analysis, V: Techniques of Scientific Computing
, pp. 3-207
-
-
Allgower, E.L.1
Georg, K.2
-
3
-
-
0001366189
-
Totally positive matrices
-
T. Ando, “Totally positive matrices”, Linear Algebra Appl. 90 (1987), 165-219.
-
(1987)
Linear Algebra Appl
, vol.90
, pp. 165-219
-
-
Ando, T.1
-
4
-
-
34250406508
-
The number of roots of a system of equations
-
Russian; translated in Functional Anal. Appl., 9: 3 (1975), 183-185
-
D. N. Bernshtem, “The number of roots of a system of equations”, Funktsional. Anal, i Prilozhen. 9: 3 (1975), 1-4. In Russian; translated in Functional Anal. Appl., 9: 3 (1975), 183-185.
-
(1975)
Funktsional. Anal, I Prilozhen
, vol.9
, Issue.3
, pp. 1-4
-
-
Bernshtem, D.N.1
-
6
-
-
0003615227
-
-
Springer, New York
-
L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and real computation, Springer, New York, 1998.
-
(1998)
Complexity and Real Computation
-
-
Blum, L.1
Cucker, F.2
Shub, M.3
Smale, S.4
-
7
-
-
0019533484
-
Multivariable Nyquist criteria, root loci, and pole placement: A geometric viewpoint
-
R. W. Brockett and C. I. Byrnes, “Multivariable Nyquist criteria, root loci, and pole placement: a geometric viewpoint”, IEEE Trans. Automat. Control 26: 1 (1981), 271-284.
-
(1981)
IEEE Trans. Automat. Control
, vol.26
, Issue.1
, pp. 271-284
-
-
Brockett, R.W.1
Byrnes, C.I.2
-
8
-
-
0002601479
-
Pole assignment by output feedback
-
Three decades of mathematical system theory, H. Nijmacher and J. M. Schumacher, Springer, Berlin
-
C. I. Byrnes, “Pole assignment by output feedback”, pp. 31-78 in Three decades of mathematical system theory, edited by H. Nijmacher and J. M. Schumacher, Lecture Notes in Control and Inform. Sci. 135, Springer, Berlin, 1989.
-
(1989)
Lecture Notes in Control and Inform. Sci
, vol.135
, pp. 31-78
-
-
Byrnes, C.I.1
-
9
-
-
0003908675
-
-
2nd ed., Undergraduate Texts in Math., Springer, New York
-
D. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra, 2nd ed., Undergraduate Texts in Math., Springer, New York, 1997.
-
(1997)
Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra
-
-
Cox, D.1
Little, J.2
O’Shea, D.3
-
10
-
-
0003352688
-
Using algebraic geometry
-
Springer, New York
-
D. Cox, J. Little, and D. O’Shea, Using algebraic geometry, Graduate Texts in Math. 185, Springer, New York, 1998.
-
(1998)
Graduate Texts in Math
, vol.185
-
-
Cox, D.1
Little, J.2
O’Shea, D.3
-
11
-
-
0002218103
-
A theorem on random polynomials and some consequences in average complexity
-
F. Cucker and M.-F. Roy, “A theorem on random polynomials and some consequences in average complexity”, J. Symbolic Comput. 10: 5 (1990), 405-409.
-
(1990)
J. Symbolic Comput
, vol.10
, Issue.5
, pp. 405-409
-
-
Cucker, F.1
Roy, M.-F.2
-
12
-
-
0034409755
-
Newtons method for overdetermined systems of equations
-
J. P. Dedieu and M. Shub, “Newton’s method for overdetermined systems of equations”, Math. Comp. 69: 231 (2000), 1099-1115.
-
(2000)
Math. Comp
, vol.69
, Issue.231
, pp. 1099-1115
-
-
Dedieu, J.P.1
Shub, M.2
-
13
-
-
0032216898
-
The geometry of algorithms with orthogonality constraints, SIAM
-
A. Edelman, T. A. Arias, and S. T. Smith, “The geometry of algorithms with orthogonality constraints”, SIAM J. Matrix Anal. Appl. 20: 2 (1999), 303-353.
-
(1999)
J. Matrix Anal. Appl
, vol.20
, Issue.2
, pp. 303-353
-
-
Edelman, A.1
Arias, T.A.2
Smith, S.T.3
-
14
-
-
0003243860
-
Commutative algebra with a view toward algebraic geometry
-
Springer, New York
-
D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Math. 150, Springer, New York, 1995.
-
(1995)
Graduate Texts in Math
, vol.150
-
-
Eisenbud, D.1
-
16
-
-
0003297366
-
Young tableaux
-
Cambridge University Press, Cambridge
-
W. Fulton, Young tableaux, London Math. Soc. Student Texts 35, Cambridge University Press, Cambridge, 1997.
-
(1997)
London Math. Soc. Student Texts
, vol.35
-
-
Fulton, W.1
-
17
-
-
0003478555
-
-
2nd ed., Addison-Wesley, Reading, MA
-
C. F. Gerald, Applied numerical analysis, 2nd ed., Addison-Wesley, Reading, MA, 1978.
-
(1978)
Applied Numerical Analysis
-
-
Gerald, C.F.1
-
19
-
-
84968520678
-
A polyhedral method for solving sparse polynomial systems
-
B. Huber and B. Sturmfels, “A polyhedral method for solving sparse polynomial systems”, Math. Comp. 64: 212 (1995), 1541-1555.
-
(1995)
Math. Comp
, vol.64
, Issue.212
, pp. 1541-1555
-
-
Huber, B.1
Sturmfels, B.2
-
20
-
-
0032355157
-
Polyhedral end games for polynomial continuation
-
B. Huber and J. Verschelde, “Polyhedral end games for polynomial continuation”, Numer. Algorithms 18: 1 (1998), 91-108.
-
(1998)
Numer. Algorithms
, vol.18
, Issue.1
, pp. 91-108
-
-
Huber, B.1
Verschelde, J.2
-
21
-
-
0033696829
-
Pieri homotopies for problems in enumerative geometry applied to pole placement in linear systems control
-
B. Huber and J. Verschelde, “Pieri homotopies for problems in enumerative geometry applied to pole placement in linear systems control”, SIAM J. Control Optim. 38: 4 (2000), 1265-1287.
-
(2000)
SIAM J. Control Optim
, vol.38
, Issue.4
, pp. 1265-1287
-
-
Huber, B.1
Verschelde, J.2
-
22
-
-
0032346893
-
Numerical Schubert calculus
-
B. Huber, F. Sottile, and B. Sturmfels, “Numerical Schubert calculus”, J. Symbolic Comput. 26: 6 (1998), 767-788.
-
(1998)
J. Symbolic Comput
, vol.26
, Issue.6
, pp. 767-788
-
-
Huber, B.1
Sottile, F.2
Sturmfels, B.3
-
23
-
-
0003792312
-
-
Prentice-Hall Inc., Englewood Cliffs, NJ
-
T. Kailath, Linear systems, Prentice-Hall Inc., Englewood Cliffs, NJ, 1980.
-
(1980)
Linear Systems
-
-
Kailath, T.1
-
24
-
-
0039930339
-
Newton polytopes and the Bezout theorem
-
Russian; translated in Functional Anal. Appl. 10: 3 (1976), 233-235
-
A. G. Kushnirenko, “Newton polytopes and the Bezout theorem”, Funktsional. Anal, i Prilozhen. 10: 3 (1976), 82-83. In Russian; translated in Functional Anal. Appl. 10: 3 (1976), 233-235.
-
(1976)
Funktsional. Anal, I Prilozhen
, vol.10
, Issue.3
, pp. 82-83
-
-
Kushnirenko, A.G.1
-
25
-
-
85011518993
-
Numerical solution of multivariate polynomial systems by homotopy continuation methods
-
1997, Cambridge Univ. Press, Cambridge
-
T. Y. Li, “Numerical solution of multivariate polynomial systems by homotopy continuation methods”, pp. 399-436 in Acta numerica, 1997, Cambridge Univ. Press, Cambridge, 1997.
-
(1997)
Acta Numerica
, pp. 399-436
-
-
Li, T.Y.1
-
26
-
-
0026908926
-
Nonlinear homotopies for solving deficient polynomial systems with parameters
-
T. Y. Li and X. S. Wang, “Nonlinear homotopies for solving deficient polynomial systems with parameters”, SIAM J. Numer. Anal. 29: 4 (1992), 1104-1118.
-
(1992)
SIAM J. Numer. Anal
, vol.29
, Issue.4
, pp. 1104-1118
-
-
Li, T.Y.1
Wang, X.S.2
-
27
-
-
0001444287
-
The cheaters homotopy: An efficient procedure for solving systems of polynomial equations
-
T. Y. Li, T. Sauer, and J. A. Yorke, “The cheater’s homotopy: an efficient procedure for solving systems of polynomial equations”, SIAM J. Numer. Anal. 26: 5 (1989), 1241-1251.
-
(1989)
SIAM J. Numer. Anal
, vol.26
, Issue.5
, pp. 1241-1251
-
-
Li, T.Y.1
Sauer, T.2
Yorke, J.A.3
-
28
-
-
0000740693
-
On totally positive matrices
-
C. Loewner, “On totally positive matrices”, Math. Z. 63 (1955), 338-340.
-
(1955)
Math. Z
, vol.63
, pp. 338-340
-
-
Loewner, C.1
-
30
-
-
0001733264
-
A homotopy for solving general polynomial systems that respects m-homogeneous structures
-
A. Morgan and A. Sommese, “A homotopy for solving general polynomial systems that respects m-homogeneous structures”, Appl. Math. Comput. 24: 2 (1987), 101-113.
-
(1987)
Appl. Math. Comput
, vol.24
, Issue.2
, pp. 101-113
-
-
Morgan, A.1
Sommese, A.2
-
31
-
-
0000749801
-
Coefficient-parameter polynomial continuation
-
Errata in 51: 2-3 (1992), 207
-
A. P. Morgan and A. J. Sommese, “Coefficient-parameter polynomial continuation”, Appl. Math. Comput. 29: 2(11) (1989), 123-160. Errata in 51: 2-3 (1992), 207.
-
(1989)
Appl. Math. Comput
, vol.29
, Issue.2-11
, pp. 123-160
-
-
Morgan, A.P.1
Sommese, A.J.2
-
32
-
-
0028202303
-
On dynamic feedback compensation and compactification of systems
-
J. Rosenthal, “On dynamic feedback compensation and compactification of systems”, SIAM J. Control Optim. 32: 1 (1994), 279-296.
-
(1994)
SIAM J. Control Optim
, vol.32
, Issue.1
, pp. 279-296
-
-
Rosenthal, J.1
-
34
-
-
0001984847
-
Some remarks on real and complex output feedback
-
pole for a description of computational aspects of the paper
-
J. Rosenthal and F. Sottile, “Some remarks on real and complex output feedback”, Systems Control Lett. 33: 2 (1998), 73-80. See http: //www.nd.edu/-rosen/pole for a description of computational aspects of the paper.
-
(1998)
Systems Control Lett
, vol.33
, Issue.2
, pp. 73-80
-
-
Rosenthal, J.1
Sottile, F.2
-
35
-
-
0002365134
-
Open problems in the area of pole placement
-
edited by V. D. Blon- del et al., Comm, and Control Engin. Series, Springer, London
-
J. Rosenthal and J. C. Willems, “Open problems in the area of pole placement”, pp. 181-191 in Open problems in mathematical systems and control theory, edited by V. D. Blon- del et al., Comm, and Control Engin. Series, Springer, London, 1999.
-
(1999)
Open Problems in Mathematical Systems and Control Theory
, pp. 181-191
-
-
Rosenthal, J.1
Willems, J.C.2
-
36
-
-
0000037540
-
Beziehungen zwischen den linearen Raumen auferlegbaren charakteristischen Bedingungen
-
H. Schubert, “Beziehungen zwischen den linearen Raumen auferlegbaren charakteristischen Bedingungen”, Math. Ann. 38 (1891), 588-602.
-
(1891)
Math. Ann
, vol.38
, pp. 588-602
-
-
Schubert, H.1
-
37
-
-
84897659949
-
The special Schubert calculus is real
-
F. Sottile, “The special Schubert calculus is real”, Electron. Res. Announc. Amer. Math. Soc. 5, 35-39. See http: //www.ams.org/era.
-
Electron. Res. Announc. Amer. Math. Soc
, vol.5
, pp. 35-39
-
-
Sottile, F.1
-
38
-
-
0034415626
-
Real rational curves in Grassmannians
-
F. Sottile, “Real rational curves in Grassmannians”, J. Amer. Math. Soc. 13: 2 (2000), 333-341.
-
(2000)
J. Amer. Math. Soc
, vol.13
, Issue.2
, pp. 333-341
-
-
Sottile, F.1
-
39
-
-
0034348603
-
Real Schubert calculus: Polynomial systems and a conjecture of Shapiro 182and Shapiro
-
F. Sottile, “Real Schubert calculus: polynomial systems and a conjecture of Shapiro 182 and Shapiro", Experiment. Math. 9: 2 (2000), 161-182.
-
(2000)
Experiment. Math
, vol.9
, Issue.2
, pp. 161-182
-
-
Sottile, F.1
-
40
-
-
85023958297
-
Numerical polynomial algebra
-
Notes for the tutorial Interaction between Numerical Analysis and Computer Algebra, held at ISSAC’98, Rostock, Germany
-
H. J. Stetter, “Numerical polynomial algebra”, Technical report, 1998. Notes for the tutorial Interaction between Numerical Analysis and Computer Algebra, held at ISSAC’98, Rostock, Germany.
-
(1998)
Technical Report
-
-
Stetter, H.J.1
-
42
-
-
0003306410
-
Grobner bases and convex polytopes
-
Amer. Math. Soc., Providence, RI
-
B. Sturmfels, Grobner bases and convex polytopes, Univ. Lecture Ser. 8, Amer. Math. Soc., Providence, RI, 1996.
-
(1996)
Univ. Lecture Ser
, vol.8
-
-
Sturmfels, B.1
-
43
-
-
0032264839
-
Polynomial equations and convex polytopes
-
B. Sturmfels, “Polynomial equations and convex polytopes”, Amer. Math. Monthly 105: 10(1998), 907-922.
-
(1998)
Amer. Math. Monthly
, vol.105
, Issue.10
, pp. 907-922
-
-
Sturmfels, B.1
-
44
-
-
0001656792
-
Algorithm 795: PHC- pack: A general-purpose solver for polynomial systems by homotopy continuation
-
J. Verschelde, “Algorithm 795: PHC- pack: A general-purpose solver for polynomial systems by homotopy continuation”, ACM Trans. Math. Software 25: 2 (1999), 251-276. See http: //www.math.msu.edu/~jan.
-
(1999)
ACM Trans. Math. Software
, vol.25
, Issue.2
, pp. 251-276
-
-
Verschelde, J.1
-
45
-
-
0028449799
-
Homotopies exploiting Newton polytopes for solving sparse polynomial systems
-
J. Verschelde, P. Verlinden, and R. Cools, “Homotopies exploiting Newton polytopes for solving sparse polynomial systems”, SIAM J. Numer. Anal. 31: 3 (1994), 915-930.
-
(1994)
SIAM J. Numer. Anal
, vol.31
, Issue.3
, pp. 915-930
-
-
Verschelde, J.1
Verlinden, P.2
Cools, R.3
-
46
-
-
0039648503
-
Mixed-volume computation by dynamic lifting applied to polynomial system solving
-
J. Verschelde, K. Gatermann, and R. Cools, “Mixed-volume computation by dynamic lifting applied to polynomial system solving”, Discrete Comput. Geom. 16: 1 (1996), 69-112.
-
(1996)
Discrete Comput. Geom
, vol.16
, Issue.1
, pp. 69-112
-
-
Verschelde, J.1
Gatermann, K.2
Cools, R.3
-
47
-
-
38249009482
-
Bezout number calculations for multi-homogeneous polynomial systems
-
C. W. Wampler, “Bezout number calculations for multi-homogeneous polynomial systems”, Appl. Math. Comput. 51: 2-3 (1992), 143-157.
-
(1992)
Appl. Math. Comput
, vol.51
, Issue.2-3
, pp. 143-157
-
-
Wampler, C.W.1
-
48
-
-
84988473168
-
Numerical continuation methods for solving polynomial systems arising in kinematics
-
C. W. Wampler, A. P. Morgan, and A. J. Sommese, “Numerical continuation methods for solving polynomial systems arising in kinematics”, ASME J. of Mechanical Design 112: 1 (1990), 59-68.
-
(1990)
ASME J. Of Mechanical Design
, vol.112
, Issue.1
, pp. 59-68
-
-
Wampler, C.W.1
Morgan, A.P.2
Sommese, A.J.3
-
49
-
-
0026822964
-
Complete solution of the nine-point path synthesis problem for four-bar linkages
-
C. W. Wampler, A. P. Morgan, and A. J. Sommese, “Complete solution of the nine-point path synthesis problem for four-bar linkages”, ASME J. of Mechanical Design 114: 1 (1992), 153-159.
-
(1992)
ASME J. Of Mechanical Design
, vol.114
, Issue.1
, pp. 153-159
-
-
Wampler, C.W.1
Morgan, A.P.2
Sommese, A.J.3
-
50
-
-
51249168759
-
A reduction theorem for totally positive matrices
-
A. M. Whitney, “A reduction theorem for totally positive matrices”, J. Analyse Math. 2 (1952), 88-92.
-
(1952)
J. Analyse Math
, vol.2
, pp. 88-92
-
-
Whitney, A.M.1
|