-
1
-
-
0003150114
-
Recent results in Sturmian words
-
(Magdeburg, 1995), edited by J. Dassow et al., World Sci. Publishing, River Edge, NJ
-
J. Berstel, “Recent results in Sturmian words”, pp. 13-24 in Developments in language theory, II (Magdeburg, 1995), edited by J. Dassow et al., World Sci. Publishing, River Edge, NJ, 1996.
-
(1996)
Developments in Language Theory, II
, pp. 13-24
-
-
Berstel, J.1
-
3
-
-
33646027172
-
Bifurcations of circle maps: Arnold tongues, bistability and rotation intervals
-
P. L. Boyland, “Bifurcations of circle maps: Arnol’d tongues, bistability and rotation intervals”, Comm. Math. Phys. 106: 3 (1986), 353-381.
-
(1986)
Comm. Math. Phys
, vol.106
, Issue.3
, pp. 353-381
-
-
Boyland, P.L.1
-
4
-
-
0002539856
-
Descriptions of the characteristic sequence of an irrational
-
T. C. Brown, “Descriptions of the characteristic sequence of an irrational”, Canad. Math. Bull. 36: 1 (1993), 15-21.
-
(1993)
Canad. Math. Bull
, vol.36
, Issue.1
, pp. 15-21
-
-
Brown, T.C.1
-
5
-
-
0000251948
-
Ordered orbits of the shift, square roots, and the devils staircase
-
S. Bullett and P. Sentenac, “Ordered orbits of the shift, square roots, and the devil’s staircase”, Math. Proc. Cambridge Philos. Soc. 115: 3 (1994), 451-481.
-
(1994)
Math. Proc. Cambridge Philos. Soc
, vol.115
, Issue.3
, pp. 451-481
-
-
Bullett, S.1
Sentenac, P.2
-
6
-
-
0002111253
-
III, and C. Tresser, “Dynamique symbolique des rotations
-
J.-M. Gambaudo, O. Lanford, III, and C. Tresser, “Dynamique symbolique des rotations”, C. R. Acad. Sci. Paris Ser. I Math. 299: 16 (1984), 823-826.
-
(1984)
C. R. Acad. Sci. Paris Ser. I Math
, vol.299
, Issue.16
, pp. 823-826
-
-
Gambaudo, J.-M.1
Lanford, O.2
-
8
-
-
4544258791
-
Optimal periodic orbits of chaotic systems occur at low period
-
B. R. Hunt and E. Ott, “Optimal periodic orbits of chaotic systems occur at low period”, Phys. Rev. E 54 (1996), 328-337.
-
(1996)
Phys. Rev. E
, vol.54
, pp. 328-337
-
-
Hunt, B.R.1
Ott, E.2
-
9
-
-
0004069773
-
-
Ph.D. thesis, Warwick University, See
-
O. Jenkinson, Conjugacy rigidity, cohomological triviality, and barycentres of invariant measures, Ph.D. thesis, Warwick University, 1996. See http://www.maths.qmw.ac.uk/-omj/.
-
(1996)
Conjugacy Rigidity, Cohomological Triviality, and Barycentres of Invariant Measures
-
-
Jenkinson, O.1
-
11
-
-
0001788272
-
Symbolic dynamics, II: Sturmian trajectories
-
M. Morse and G. A. Hed- lund, “Symbolic dynamics, II: Sturmian trajectories”, Amer. J. Math. 62 (1940), 1-42.
-
(1940)
Amer. J. Math
, vol.62
, pp. 1-42
-
-
Morse, M.1
Hed-Lund, G.A.2
-
12
-
-
51649164983
-
Bifurcations and stability of families of diffeomorphisms
-
S. Newhouse, J. Palis, and F. Takens, “Bifurcations and stability of families of diffeomorphisms”, Publ. Math. Inst. Hautes Etudes Sci. 57 (1983), 5-71.
-
(1983)
Publ. Math. Inst. Hautes Etudes Sci
, vol.57
, pp. 5-71
-
-
Newhouse, S.1
Palis, J.2
Takens, F.3
-
13
-
-
0003655416
-
-
3rd ed., Macmillan, New York
-
H. L. Royden, Real analysis, 3rd ed., Macmillan, New York, 1988.
-
(1988)
Real Analysis
-
-
Royden, H.L.1
-
14
-
-
0002769875
-
The geometry of Markoff numbers
-
C. Series, “The geometry of Markoff numbers”, Math. Intelligencer 7: 3 (1985), 20-29.
-
(1985)
Math. Intelligencer
, vol.7
, Issue.3
, pp. 20-29
-
-
Series, C.1
-
15
-
-
0000089306
-
Symbolic dynamics and rotation numbers
-
P. Veerman, “Symbolic dynamics and rotation numbers”, Phys. A 134: 3 (1986), 543-576.
-
(1986)
Phys. A
, vol.134
, Issue.3
, pp. 543-576
-
-
Veerman, P.1
-
16
-
-
0042385363
-
Symbolic dynamics of order-preserving orbits
-
P. Veerman, “Symbolic dynamics of order-preserving orbits”, Phys. D 29: 1-2 (1987), 191-201.
-
(1987)
Phys. D
, vol.29
, Issue.1-2
, pp. 191-201
-
-
Veerman, P.1
|