-
1
-
-
4243439752
-
-
D. Margetis, G. Fikioris, J. M. Myers, and T. T. Wu, Phys. Rev. E 58, 2531 (1998).
-
(1998)
Phys. Rev. E
, vol.58
, pp. 2531
-
-
Margetis, D.1
Fikioris, G.2
Myers, J.M.3
Wu, T.T.4
-
3
-
-
0002236231
-
-
B. Z. Katsenelenbaum and M. Yu. Shalukhin, Radiotekh. Elektron. (Moscow) 33, 1878 (1988) [Sov. J. Commun. Technol. Electron. 34, 25 (1989)].
-
(1989)
Sov. J. Commun. Technol. Electron.
, vol.34
, pp. 25
-
-
-
4
-
-
84988178398
-
-
T. S. Angell and A. Kirsch, Math. Methods Appl. Sci. 15, 647 (1992); T. S. Angell, R. E. Kleinman, and B. Vainberg, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 59, 242 (1998).
-
(1992)
Math. Methods Appl. Sci.
, vol.15
, pp. 647
-
-
Angell, T.S.1
Kirsch, A.2
-
5
-
-
0032153835
-
-
T. S. Angell and A. Kirsch, Math. Methods Appl. Sci. 15, 647 (1992); T. S. Angell, R. E. Kleinman, and B. Vainberg, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 59, 242 (1998).
-
(1998)
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
, vol.59
, pp. 242
-
-
Angell, T.S.1
Kleinman, R.E.2
Vainberg, B.3
-
6
-
-
0002320016
-
-
Ph.D. thesis, Harvard University
-
G. Fikioris, Ph.D. thesis, Harvard University, 1993.
-
(1993)
-
-
Fikioris, G.1
-
8
-
-
85037760916
-
-
note
-
Various issues of routine rigor such as the interpretation of the Laplacian, the nature of the limit at the boundary, and the admissible data h(s) are not addressed in this paper. It is sufficient although not necessary to state that C is a simple closed, rectifiable, and infinitely differentiable curve.
-
-
-
-
9
-
-
85037783030
-
-
note
-
c without lying in C.
-
-
-
-
11
-
-
85037753364
-
-
note
-
A finite-dimensional version of the present problem involves the maximization of a linear function over the intersection of a sphere and an ellipsoid. Accordingly, no complication of any kind should arise in the use of the Lagrange multipliers.
-
-
-
-
12
-
-
0000231158
-
Bateman manuscript project
-
Krieger, Malabar, FL
-
Bateman Manuscript Project, Higher Transcendental Functions, edited by A. Erdélyi (Krieger, Malabar, FL, 1981), Vol. II, pp. 80, 81, 85, 86, 87, 96, 102, 317.
-
(1981)
Higher Transcendental Functions
, vol.2
, pp. 80
-
-
Erdélyi, A.1
-
13
-
-
0004147916
-
-
Addison-Wesley, Reading, MA
-
For the statement of a theorem underlying the Poisson summation formula see T. M. Apostol, Mathematical Analysis (Addison-Wesley, Reading, MA, 1974), pp. 332-335.
-
(1974)
Mathematical Analysis
, pp. 332-335
-
-
Apostol, T.M.1
-
16
-
-
85037776421
-
-
note
-
Of course, the logarithmic derivative φ(z) of the gamma function here should not be confused with the φ(r̂) of Eq. (2.4).
-
-
-
-
17
-
-
84966256168
-
-
These authors calculate only the first three terms of the asymptotic expansion (3.30). Their method does not make use of the Mellin transform technique
-
B. J. Stoyanov and R. A. Farrell, Math. Comput. 49, 275 (1987). These authors calculate only the first three terms of the asymptotic expansion (3.30). Their method does not make use of the Mellin transform technique.
-
(1987)
Math. Comput.
, vol.49
, pp. 275
-
-
Stoyanov, B.J.1
Farrell, R.A.2
-
18
-
-
0000231158
-
Bateman manuscript project
-
Krieger, Malabar, FL
-
Bateman Manuscript Project, Higher Transcendental Functions, edited by A. Erdélyi (Krieger, Malabar, FL, 1981), Vol, I, pp. 101, 182, 267.
-
(1981)
Higher Transcendental Functions
, vol.1
, pp. 101
-
-
Erdélyi, A.1
-
20
-
-
0002317337
-
-
Chap. 5 of Ph.D. thesis, Harvard University
-
D. Margetis, Chap. 5 of Ph.D. thesis, Harvard University, 1999.
-
(1999)
-
-
Margetis, D.1
-
22
-
-
85037755088
-
-
note
-
α→0 of its right-hand side are not equal.
-
-
-
-
23
-
-
85037756225
-
-
note
-
For a fixed point in C and a fixed number of reflections, the contributing rays can result from minimizing the total length of all possible paths that originate from a line of reference, by running parallel or antiparallel to the direction of maximum field.
-
-
-
-
25
-
-
85113163676
-
-
Dover, New York
-
N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space (Dover, New York, 1993), Vol. I, pp. 74-77.
-
(1993)
Theory of Linear Operators in Hilbert Space
, vol.1
, pp. 74-77
-
-
Akhiezer, N.I.1
Glazman, I.M.2
|