메뉴 건너뛰기




Volumn 100, Issue 3-4, 2000, Pages 791-796

Zero-dimensional spectral measures for quasi-periodic operators with analytic potential

Author keywords

Hausdorff dimension; Quasi periodic; Schr dinger operator; Spectral measure

Indexed keywords


EID: 0034338455     PISSN: 00224715     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1018635811535     Document Type: Article
Times cited : (2)

References (6)
  • 1
    • 0001804424 scopus 로고    scopus 로고
    • On non-pertubative localization with quasi-periodic potential
    • J. Bourgain and M. Goldstein, On non-pertubative localization with quasi-periodic potential, to appear, Annals of Math.
    • Annals of Math.
    • Bourgain, J.1    Goldstein, M.2
  • 3
    • 51249181642 scopus 로고
    • Une methode pour minorer les exposants de Lyapunov et quelques exemples montrant le caractere local d'un theoreme d'Arnold et de moser sur le tore en dimension 2
    • M. Herman, Une methode pour minorer les exposants de Lyapunov et quelques exemples montrant le caractere local d'un theoreme d'Arnold et de moser sur le tore en dimension 2. Commun. Math. Helv. 58:453-502 (1983).
    • (1983) Commun. Math. Helv. , vol.58 , pp. 453-502
    • Herman, M.1
  • 4
    • 0001666109 scopus 로고    scopus 로고
    • Power-law subordinacy and singular spectra, I. Half line operators
    • S. Jitomirskaya and Y. Last, Power-Law subordinacy and singular spectra, I. Half line operators, Acta Math. 193:171 189 (1999).
    • (1999) Acta Math. , vol.193
    • Jitomirskaya, S.1    Last, Y.2
  • 5
    • 0034348973 scopus 로고    scopus 로고
    • Power-law subordinacy and sigular spectra, II. Line operators
    • S. Jitomirskaya and Y. Last, Power-Law subordinacy and sigular spectra, II. Line operators. Commun. Math. Phys. 211:643-658 (2000).
    • (2000) Commun. Math. Phys. , vol.211 , pp. 643-658
    • Jitomirskaya, S.1    Last, Y.2
  • 6
    • 0001305291 scopus 로고
    • Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials
    • F. Sorets and T. Spencer, Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials, Commun. Math. Phys. 142:543-566 (1991).
    • (1991) Commun. Math. Phys. , vol.142 , pp. 543-566
    • Sorets, F.1    Spencer, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.