-
1
-
-
85037770689
-
Analogies between finite-dimensional irreducible representations of SO(2n) and infinite-dimensional irreducible representations of Sp(2n,ℝ). I. Characters and products
-
to be published
-
R. C. King and B. G. Wybourne, "Analogies between finite-dimensional irreducible representations of SO(2n) and infinite-dimensional irreducible representations of Sp(2n,ℝ). I. Characters and products," J. Math. Phys. (to be published).
-
J. Math. Phys.
-
-
King, R.C.1
Wybourne, B.G.2
-
2
-
-
36149039478
-
Microscopic theory of the nuclear collective model
-
D. J. Rowe, "Microscopic theory of the nuclear collective model," Rep. Prog. Phys. 48, 1419-1480 (1985).
-
(1985)
Rep. Prog. Phys.
, vol.48
, pp. 1419-1480
-
-
Rowe, D.J.1
-
3
-
-
0001838823
-
An effective shell model theory of collective states
-
J. Carvalho, R. LeBlanc, M. Vassanji, and D. J. Rowe, "An effective shell model theory of collective states," Nucl. Phys. A 452, 263-276 (1986).
-
(1986)
Nucl. Phys. A
, vol.452
, pp. 263-276
-
-
Carvalho, J.1
LeBlanc, R.2
Vassanji, M.3
Rowe, D.J.4
-
4
-
-
0001585057
-
Classification of N-electron states in a quantum dot
-
R. W. Haase and N. F. Johnson, "Classification of N-electron states in a quantum dot," Phys. Rev. B 48, 1583-1594 (1993).
-
(1993)
Phys. Rev. B
, vol.48
, pp. 1583-1594
-
-
Haase, R.W.1
Johnson, N.F.2
-
5
-
-
0002761383
-
Application of s-functions to the quantum Hall effect and quantum dots
-
B. G. Wybourne, "Application of S-functions to the quantum Hall effect and quantum dots." Rep. Math. Phys. 34, 9-16 (1994).
-
(1994)
Rep. Math. Phys.
, vol.34
, pp. 9-16
-
-
Wybourne, B.G.1
-
6
-
-
0002219750
-
Unitary representations, branching rules and matrix elements for the non-compact symplectic groups
-
D. J. Rowe, B. G. Wybourne, and P. H. Butler, "Unitary representations, branching rules and matrix elements for the non-compact symplectic groups," J. Phys. A 18, 939-953 (1985).
-
(1985)
J. Phys. A
, vol.18
, pp. 939-953
-
-
Rowe, D.J.1
Wybourne, B.G.2
Butler, P.H.3
-
7
-
-
0001623871
-
Holomorphic discrete series and harmonic series unitary irreducible representations of non-compact lie groups: Sp(2n,ℝ), U(p,q) and SO*(2n)
-
R. C. King and B. G. Wybourne, "Holomorphic discrete series and harmonic series unitary irreducible representations of non-compact Lie groups: Sp(2n,ℝ), U(p,q) and SO*(2n)," J. Phys. A 18, 3113-3139 (1985).
-
(1985)
J. Phys. A
, vol.18
, pp. 3113-3139
-
-
King, R.C.1
Wybourne, B.G.2
-
8
-
-
0001869432
-
Symmetrised kronecker products of the fundamental representation of Sp(n,R)
-
J. Carvalho, "Symmetrised Kronecker products of the fundamental representation of Sp(n,R)," J. Phys. A 23, 1909-1927 (1990).
-
(1990)
J. Phys. A
, vol.23
, pp. 1909-1927
-
-
Carvalho, J.1
-
9
-
-
0030496480
-
Plethysm for the noncompact group Sp(2n,ℝ) and new S-function identities
-
K. Grudzinski and B. G. Wybourne, "Plethysm for the noncompact group Sp(2n,ℝ) and new S-function identities," J. Phys. A 29, 6631-6641 (1996).
-
(1996)
J. Phys. A
, vol.29
, pp. 6631-6641
-
-
Grudzinski, K.1
Wybourne, B.G.2
-
10
-
-
0032559164
-
Symmetrised squares and cubes of the fundamental unirreps of Sp(2n,ℝ)
-
J.-Y. Thibon, F. Toumazet, and B. G. Wybourne, "Symmetrised squares and cubes of the fundamental unirreps of Sp(2n,ℝ)," J. Phys. A 31, 1073-1086 (1998).
-
(1998)
J. Phys. A
, vol.31
, pp. 1073-1086
-
-
Thibon, J.-Y.1
Toumazet, F.2
Wybourne, B.G.3
-
11
-
-
0040426424
-
Products and symmetrised powers of irreducible representations of Sp(2n,ℝ) and their associates
-
R. C. King and B. G. Wybourne, "Products and symmetrised powers of irreducible representations of Sp(2n,ℝ) and their associates," J. Phys. A 31, 6669-6689 (1998).
-
(1998)
J. Phys. A
, vol.31
, pp. 6669-6689
-
-
King, R.C.1
Wybourne, B.G.2
-
14
-
-
84963082154
-
On the concomitants of spin tensors
-
D. E. Littlewood, "On the concomitants of spin tensors," Proc. London Math. Soc. 49, 307-327 (1947).
-
(1947)
Proc. London Math. Soc.
, vol.49
, pp. 307-327
-
-
Littlewood, D.E.1
-
15
-
-
0001706792
-
Reduction of the Kronecker products for rotational groups
-
P. H. Butler and B. G. Wybourne, "Reduction of the Kronecker products for rotational groups," J. Phys. (Paris) 30, 655-664 (1969).
-
(1969)
J. Phys. (Paris)
, vol.30
, pp. 655-664
-
-
Butler, P.H.1
Wybourne, B.G.2
-
16
-
-
0040068325
-
Symmetrised powers of rotation group representations
-
R. C. King, L. Dehuai, and B. G. Wybourne, "Symmetrised powers of rotation group representations," J. Phys. A 14, 2509-2538 (1981).
-
(1981)
J. Phys. A
, vol.14
, pp. 2509-2538
-
-
King, R.C.1
Dehuai, L.2
Wybourne, B.G.3
-
17
-
-
0002842550
-
A hopf algebra approach to inner plethysms
-
T. Scharf and J.-Y. Thibon, "A Hopf algebra approach to inner plethysms," Adv. Math. 104. 30-58 (1994).
-
(1994)
Adv. Math.
, vol.104
, pp. 30-58
-
-
Scharf, T.1
Thibon, J.-Y.2
-
19
-
-
0043015993
-
The symmetric group: Characters, products and plethysms
-
P. H. Butler and R. C. King, "The symmetric group: Characters, products and plethysms," J. Math. Phys. 14, 1176-1183 (1973).
-
(1973)
J. Math. Phys.
, vol.14
, pp. 1176-1183
-
-
Butler, P.H.1
King, R.C.2
-
20
-
-
36849114324
-
m and the evaluation of inner plethysms
-
m and the evaluation of inner plethysms," J. Math. Phys. 15, 258-267 (1974).
-
(1974)
J. Math. Phys.
, vol.15
, pp. 258-267
-
-
King, R.C.1
-
21
-
-
36149046333
-
The symmetric group: Branching rules, products and plethysms for spin representations
-
L. Dehuai and B. G. Wybourne, "The symmetric group: Branching rules, products and plethysms for spin representations," J. Phys. A 14, 327-348 (1981).
-
(1981)
J. Phys. A
, vol.14
, pp. 327-348
-
-
Dehuai, L.1
Wybourne, B.G.2
-
22
-
-
0001497591
-
n, branching rules for ordinary and spin irreps
-
n, branching rules for ordinary and spin irreps," J. Phys. A 22, 3771-3778 (1989).
-
(1989)
J. Phys. A
, vol.22
, pp. 3771-3778
-
-
Salam, M.A.1
Wybourne, B.G.2
-
23
-
-
0347703372
-
Generating functions for stable branching coefficients of U(n) →S(n), O(n)→S(n) and O(n - 1 )→S(n)
-
T. Scharf, J.-Y. Thibon, and B. G. Wybourne, "Generating functions for stable branching coefficients of U(n) →S(n), O(n)→S(n) and O(n - 1 )→S(n)," J. Phys. A 30, 6963-6975 (1997).
-
(1997)
J. Phys. A
, vol.30
, pp. 6963-6975
-
-
Scharf, T.1
Thibon, J.-Y.2
Wybourne, B.G.3
-
27
-
-
85037770867
-
-
SCHUR An interactive program for calculating properties of Lie groups and symmetric functions, distributed by S Christensen. Electronic mail: steve@scm.vnet.net
-
SCHUR An interactive program for calculating properties of Lie groups and symmetric functions, distributed by S Christensen. Electronic mail: steve@scm.vnet.net; http://scm.vnet/Christensen.html
-
-
-
-
28
-
-
0003084198
-
Products and plethysms of characters with orthogonal, symplectic and symmetric groups
-
D. E. Littlewood, "Products and plethysms of characters with orthogonal, symplectic and symmetric groups," Can. J. Math. 10, 17-32 (1958).
-
(1958)
Can. J. Math.
, vol.10
, pp. 17-32
-
-
Littlewood, D.E.1
-
29
-
-
0001176796
-
Branching rules for classical lie groups using tensor and spinor methods
-
R. C. King, "Branching rules for classical Lie groups using tensor and spinor methods," J. Phys. A 8, 429-449 (1975).
-
(1975)
J. Phys. A
, vol.8
, pp. 429-449
-
-
King, R.C.1
-
30
-
-
0032493586
-
Products and symmetrized powers of irreducible representations of SO*(2n)
-
R. C. King, F. Toumazet, and B. G. Wybourne, "Products and symmetrized powers of irreducible representations of SO*(2n)," J. Phys. A 31, 6691-6705 (1998).
-
(1998)
J. Phys. A
, vol.31
, pp. 6691-6705
-
-
King, R.C.1
Toumazet, F.2
Wybourne, B.G.3
|