-
1
-
-
35949021230
-
Geometry from a time series[J]
-
Packard N H, Crutchifield J P, Farmer J D, et ai. Geometry from a time series[J]. Phys Rev Lett, 1980,45(6) :712~716.
-
(1980)
Phys Rev Lett
, vol.45
, Issue.6
, pp. 712-716
-
-
Packard, N.H.1
Crutchifield, J.P.2
Farmer, J.D.3
-
2
-
-
0000779360
-
Mane. Detecting strange attractors in fluid turbulence[A]
-
Takens F, Mane. Detecting strange attractors in fluid turbulence[A]. In: Rand D A, Young L S, Eds. Dynamical Systenvs and Turbulence[C] .. Vol.898 of Lecture Notes in Mathematics, Berlin: Springer, 1986,366.
-
(1986)
In: Rand D A, Young L S, Eds. Dynamical Systenvs and Turbulence[C] .. Vol.898 of Lecture Notes in Mathematics, Berlin: Springer
, pp. 366
-
-
Takens, F.1
-
3
-
-
22244479710
-
A comparison of estimators for I// noise[J]
-
Berndt Pilgram, Kaplan Daniel T. A comparison of estimators for I// noise[J] . Phys D, 1998, 114(3): 108-122.
-
(1998)
Phys D
, vol.114
, Issue.3
, pp. 108-122
-
-
Pilgram, B.1
Kaplan Daniel, T.2
-
4
-
-
44949273552
-
State space reconstruction in the presence of noise[j]
-
Casdagli M, Eubank S, Farmer J D, et al. State space reconstruction in the presence of noise[j]. P/rysD,1991,51(1):52~98.
-
(1991)
P/rysD
, vol.51
, Issue.1
, pp. 52-98
-
-
Casdagli, M.1
Eubank, S.2
Farmer, J.D.3
-
5
-
-
0002587376
-
Effective scaling regime for computing the correlation dimension from chaotic time series[J]
-
YING Cheng-lai, David Lerner. Effective scaling regime for computing the correlation dimension from chaotic time series[J] . Phys D, 1998,115(5) : 1 - 18.
-
(1998)
Phys D
, vol.115
, Issue.5
, pp. 1-18
-
-
Cheng-lai, Y.1
Lerner, D.2
-
6
-
-
0000357105
-
Dimension increase in filtered chaotic signals [j]
-
Badii R, Broggi G, Derighetti B, et al. Dimension increase in filtered chaotic signals [j] . Phys Rev Lett, 1988,60(4) :979 - 984
-
(1988)
Phys Rev Lett
, vol.60
, Issue.4
, pp. 979-984
-
-
Badii, R.1
Broggi, G.2
Derighetti, B.3
-
7
-
-
0000910223
-
A causal filters for chaotic signals[J]
-
Mitschke F. A causal filters for chaotic signals[J] . Phys Rev A , 1990,41:1169 - 1171.
-
(1990)
Phys Rev a
, vol.41
, pp. 1169-1171
-
-
Mitschke, F.1
-
8
-
-
4243746560
-
Studies in astronomical time series analysis IV, Modeling chaotic and random processes with linear filterst J
-
Scargle J D. Studies in astronomical time series analysis IV, Modeling chaotic and random processes with linear filterst J]. Astrophys 7,1990,359(12) :469 -482.
-
(1990)
Astrophys 7
, vol.359
, Issue.12
, pp. 469-482
-
-
Scargle, J.D.1
-
9
-
-
34249988665
-
Extracting qualitatire dynamics from experimental data[j]
-
Broomherd D S. Extracting qualitatire dynamics from experimental data[j]. Phys D, 1987,20 (10:217-236.
-
(1987)
Phys D
, vol.20
, pp. 217-236
-
-
Broomherd, D.S.1
-
10
-
-
44049117992
-
An analystic approach to practical state space reconstruction!
-
Gibson J F, Casdagli M, Eubank S, et al. An analystic approach to practical state space reconstruction!; J] . Phys 0,1992,57(7) :1 ~ 30.
-
(1992)
J . Phys 0
, vol.57
, Issue.7
, pp. 1-30
-
-
Gibson, J.F.1
Casdagli, M.2
Eubank, S.3
-
11
-
-
84956258433
-
Optimal embeddings of chaotic attractors from topological considerations[j]
-
[ll] Liebert W, Pawalzik K, Schuster H G. Optimal embeddings of chaotic attractors from topological considerations[j]. Europ Physics Lett, 1991,14(8) :521 - 526.
-
(1991)
Europ Physics Lett
, vol.14
, Issue.8
, pp. 521-526
-
-
Liebert, W.1
Pawalzik, K.2
Schuster, H.G.3
-
12
-
-
0032684994
-
The state space reconstruction technology of different kinds of chaotic data obtained from dynamical system[J]
-
CHEN Yu-shu, MA Jun-hai, LIU Zeng-rong. The state space reconstruction technology of different kinds of chaotic data obtained from dynamical system[J] . Acta Mechanica Sinica, 1999, 15(1) : 82-92.
-
(1999)
Acta Mechanica Sinica
, vol.15
, Issue.1
, pp. 82-92
-
-
Yu-shu, C.1
Jun-hai, M.A.2
Zeng-rong, L.I.U.3
-
13
-
-
33745995217
-
The non-linear dynamic system reconstruction of the chaotic time series [D] . a thesis for Degree of engineering
-
MA Jun-hai. The non-linear dynamic system reconstruction of the chaotic time series [D] . a thesis for Degree of engineering. Tianjin:Tianjin University, 1997. (in Chinese)
-
(1997)
Tianjin:Tianjin University
-
-
Jun-hai, M.A.1
-
14
-
-
0002587376
-
Effective scaling regime for computing the correlation dimension from chaotic tune series[J]
-
YING Cheng-lai, David Lerner. Effective scaling regime for computing the correlation dimension from chaotic tune series[J] . Phys D, 1998,115(5) : 1 - 18.
-
(1998)
Phys D
, vol.115
, Issue.5
, pp. 1-18
-
-
Cheng-lai, Y.1
Lerner, D.2
-
15
-
-
0000478578
-
Statistical precision of dimension estimatorsf j
-
Theiler J. Statistical precision of dimension estimatorsf j] . Phys Rev A , 1990,41(6) :3038 ~ 3051.
-
(1990)
Phys Rev a
, vol.41
, Issue.6
, pp. 3038-3051
-
-
Theiler, J.1
|