-
3
-
-
1542743743
-
A coassociative C*-quantum group with nonintegral dimensions
-
Böhm G., Szlachányi K. A coassociative C*-quantum group with nonintegral dimensions. Lett. Math. Phys. 35:1996;437-456.
-
(1996)
Lett. Math. Phys.
, vol.35
, pp. 437-456
-
-
Böhm, G.1
Szlachányi, K.2
-
4
-
-
0033570847
-
Weak Hopf algebras. I. Integral theory and the C*-structure
-
Böhm G., Nill F., Szlachányi K. Weak Hopf algebras. I. Integral theory and the C*-structure. J. Algebra. 221:1999;385-438.
-
(1999)
J. Algebra
, vol.221
, pp. 385-438
-
-
Böhm, G.1
Nill, F.2
Szlachányi, K.3
-
5
-
-
0003502277
-
-
Lecture Notes in Mathematics. New York/Berlin: Springer-Verlag. p. 101-228
-
Deligne P., Milne J. S. Tannakian Categories. Lecture Notes in Mathematics. 900:1982;Springer-Verlag, New York/Berlin. p. 101-228.
-
(1982)
Tannakian Categories
, vol.900
-
-
Deligne, P.1
Milne, J.S.2
-
8
-
-
0038317711
-
Generalizations of the theory of superselection sectors
-
D. Kastler. Singapore: World Scientific
-
Fredenhagen K. Generalizations of the theory of superselection sectors. Kastler D., Algebraic Theory of Superselection Sectors. 1989;World Scientific, Singapore.
-
(1989)
Algebraic Theory of Superselection Sectors
-
-
Fredenhagen, K.1
-
10
-
-
21344494979
-
A duality for Hopf algebras and for subfactors. I
-
Longo R. A duality for Hopf algebras and for subfactors. I. Commun. Math. Phys. 159:1994;133.
-
(1994)
Commun. Math. Phys.
, vol.159
, pp. 133
-
-
Longo, R.1
-
11
-
-
0001164991
-
A theory of dimension
-
Longo R., Roberts J. E. A theory of dimension. K-theory. 11:1997;103-159.
-
(1997)
K-theory
, vol.11
, pp. 103-159
-
-
Longo, R.1
Roberts, J.E.2
-
12
-
-
0003969139
-
-
Graduate Text in Mathematics. New York/Berlin: Springer-Verlag
-
Mac Lane S. Categories for the Working Mathematician. Graduate Text in Mathematics. 5:1971;Springer-Verlag, New York/Berlin.
-
(1971)
Categories for the Working Mathematician
, vol.5
-
-
Mac Lane, S.1
-
13
-
-
0038140669
-
1 factors
-
Preprint math.QA/9810049; to appear.
-
1 factors, Preprint math.QA/9810049;, J. Operator Theory, to appear.
-
J. Operator Theory
-
-
Nikshych, D.1
-
18
-
-
0039386349
-
Quantum chains of Hopf algebras with quantum double cosymmetry
-
Quantum chains of Hopf algebras and order-disorder fields with quantum double symmetry, Preprint, hep-th 9507 174;
-
F. Nill, and, K. Szlachányi, Quantum chains of Hopf algebras and order-disorder fields with quantum double symmetry, Preprint, hep-th 9507 174; Quantum chains of Hopf algebras with quantum double cosymmetry, Commun. Math. Phys., 187, (1997), 159-200.
-
(1997)
Commun. Math. Phys.
, vol.187
, pp. 159-200
-
-
Nill, F.1
Szlachányi, K.2
-
19
-
-
0000934215
-
Classification of amenable subfactors of type II
-
Popa S. Classification of amenable subfactors of type II. Acta. Math. 172:1994;163-255.
-
(1994)
Acta. Math.
, vol.172
, pp. 163-255
-
-
Popa, S.1
-
20
-
-
0003329622
-
Weak Hopf algebras
-
S. Doplicher, R. Longo, J. E. Roberts, & L. Zsidó. International Press
-
Szlachányi K. Weak Hopf algebras. Doplicher S., Longo R., Roberts J. E., Zsidó L., Operator Algebras and Quantum Field Theory. 1996;International Press.
-
(1996)
Operator Algebras and Quantum Field Theory
-
-
Szlachányi, K.1
-
21
-
-
84966199835
-
Finite index subfactors and Hopf algebra crossed products
-
Szymanski W. Finite index subfactors and Hopf algebra crossed products. Proc. Amer. Math. Soc. 120:1994;519.
-
(1994)
Proc. Amer. Math. Soc.
, vol.120
, pp. 519
-
-
Szymanski, W.1
-
23
-
-
0001346949
-
On the structure of Brauer's centralizer algebras
-
Wenzl H. On the structure of Brauer's centralizer algebras. Ann. of Math. 128:1988;173-193.
-
(1988)
Ann. of Math.
, vol.128
, pp. 173-193
-
-
Wenzl, H.1
-
24
-
-
38149147706
-
Duality for generalized Kac algebras and a characterization of finite groupoid algebras
-
Yamanouchi T. Duality for generalized Kac algebras and a characterization of finite groupoid algebras. J. Algebra. 163:1994;9-50.
-
(1994)
J. Algebra
, vol.163
, pp. 9-50
-
-
Yamanouchi, T.1
-
25
-
-
0001320392
-
Framed tangles and a theorem of Deligne on braided deformations of Tannakian categories
-
Yetter D. N. Framed tangles and a theorem of Deligne on braided deformations of Tannakian categories. Contemp. Math. 134:1992;325-349.
-
(1992)
Contemp. Math.
, vol.134
, pp. 325-349
-
-
Yetter, D.N.1
|