-
1
-
-
0000728071
-
Semisimple algebras of infinite valued logic and bold fuzzy set theory
-
Belluce L. P. Semisimple algebras of infinite valued logic and bold fuzzy set theory. Canad. J. Math. 38:1986;1356-1379.
-
(1986)
Canad. J. Math.
, vol.38
, pp. 1356-1379
-
-
Belluce L., P.1
-
4
-
-
84968464959
-
Sheaf constructions and their elementary properties
-
Burris S., Werner H. Sheaf constructions and their elementary properties. Trans. Amer. Math. Soc. 248:1979;269-309.
-
(1979)
Trans. Amer. Math. Soc.
, vol.248
, pp. 269-309
-
-
Burris, S.1
Werner, H.2
-
5
-
-
0002111534
-
Stone filters and ideals in distributive lattices
-
Cignoli R. Stone filters and ideals in distributive lattices. Bull. Math. Soc. Sci. Math. Roumanie. 15:1971;131-137.
-
(1971)
Bull. Math. Soc. Sci. Math. Roumanie
, vol.15
, pp. 131-137
-
-
Cignoli, R.1
-
6
-
-
51249186553
-
The lattice of global sections of sheaves of chains over Boolean spaces
-
Cignoli R. The lattice of global sections of sheaves of chains over Boolean spaces. Algebra Universalis. 8:1978;357-373.
-
(1978)
Algebra Universalis
, vol.8
, pp. 357-373
-
-
Cignoli, R.1
-
8
-
-
0030140710
-
Boolean products of MV-algebras: Hypernormal MV-algebras
-
Cignoli R., Torrens A. Boolean products of MV-algebras: Hypernormal MV-algebras. J. Math. Anal. Appl. 199:1996;637-653.
-
(1996)
J. Math. Anal. Appl.
, vol.199
, pp. 637-653
-
-
Cignoli, R.1
Torrens, A.2
-
10
-
-
0002089913
-
Sheaf spaces and sheaves of universal algebras
-
Davey B. A. Sheaf spaces and sheaves of universal algebras. Math. Z. 134:1973;275-290.
-
(1973)
Math. Z.
, vol.134
, pp. 275-290
-
-
Davey B., A.1
-
11
-
-
0000954916
-
Perfect MV-algebras are categorically equivalent to abelian l-groups
-
Di Nola A., Lettieri A. Perfect MV-algebras are categorically equivalent to abelian l-groups. Studia Logica. 53:1994;417-432.
-
(1994)
Studia Logica
, vol.53
, pp. 417-432
-
-
Di Nola, A.1
Lettieri, A.2
-
12
-
-
85037786159
-
-
A. Di Nola, S. Sessa, F. Esteva, L. Godo, and, P. Garcia, The variety generated from perfect BL-algebras: An algebraic approach in fuzzy logic setting, to appear.
-
The variety generated from perfect BL-algebras: An algebraic approach in fuzzy logic setting, to appear.
-
-
Di Nola, A.1
Sessa, S.2
Esteva, F.3
Godo, L.4
Garcia, P.5
-
14
-
-
0002240971
-
Pierce representations of distributive lattices
-
Georgescu G. Pierce representations of distributive lattices. Kobe J. Math. 10:1993;1-11.
-
(1993)
Kobe J. Math.
, vol.10
, pp. 1-11
-
-
Georgescu, G.1
-
18
-
-
0001037921
-
W-algebras which are Boolean products of members of SR[1] and CW-algebras
-
Torrens A. W-algebras which are Boolean products of members of SR[1] and CW-algebras. Studia Logica. 46:1987;265-274.
-
(1987)
Studia Logica
, vol.46
, pp. 265-274
-
-
Torrens, A.1
-
19
-
-
0002153765
-
Boolean products of CW-algebras and pseudo-complementation
-
Torrens A. Boolean products of CW-algebras and pseudo-complementation. Rep. Math. Logic. 23:1989;31-38.
-
(1989)
Rep. Math. Logic
, vol.23
, pp. 31-38
-
-
Torrens, A.1
-
20
-
-
0001903020
-
BL-algebras of basic fuzzy logic
-
Turunen E. BL-algebras of basic fuzzy logic. Mathware Soft Comput. 6:1999;49-61.
-
(1999)
Mathware Soft Comput.
, vol.6
, pp. 49-61
-
-
Turunen, E.1
-
23
-
-
0002289912
-
On the characterization of Stone lattices
-
Varlet J. On the characterization of Stone lattices. Acta Sci. Math. Szeged. 27:1966;81-84.
-
(1966)
Acta Sci. Math. Szeged
, vol.27
, pp. 81-84
-
-
Varlet, J.1
-
24
-
-
0001759439
-
Lattices and topological spaces
-
Wallman H. Lattices and topological spaces. Ann. Math. 39:1938;112-126.
-
(1938)
Ann. Math.
, vol.39
, pp. 112-126
-
-
Wallman, H.1
|