-
1
-
-
2642636864
-
-
J. Wintterlin, S. Völkening, T. V. W. Janssens, T. Zambelli, and G. Ertl, Science 278:1931 (1997).
-
(1997)
Science
, vol.278
, pp. 1931
-
-
Wintterlin, J.1
Völkening, S.2
Janssens, T.V.W.3
Zambelli, T.4
Ertl, G.5
-
2
-
-
0031450193
-
-
Z. Zambelli, J. V. Bart, J. Wintterlin, and G. Ertl, Nuture 390:495 (1997).
-
(1997)
Nuture
, vol.390
, pp. 495
-
-
Zambelli, Z.1
Bart, J.V.2
Wintterlin, J.3
Ertl, G.4
-
5
-
-
0000196035
-
-
B. Sieben, G. Bozdech, N. Ernst, and J. H. Block, Surf. Sci. 167:352 (1996).
-
(1996)
Surf. Sci.
, vol.167
, pp. 352
-
-
Sieben, B.1
Bozdech, G.2
Ernst, N.3
Block, J.H.4
-
6
-
-
0030211243
-
-
J. P. Boon, D. Dab, R. Kapral, and A. Lawniczak, Phys. Reps. 173:55 (1996).
-
(1996)
Phys. Reps.
, vol.173
, pp. 55
-
-
Boon, J.P.1
Dab, D.2
Kapral, R.3
Lawniczak, A.4
-
10
-
-
0000360033
-
-
M. A. Van Hove, R. J. Koestner, P. C. Stair, J. P. Biberian, L. L. Kesmodel, I. Bartos, and G. A. Somorjai, Surf. Sci. 103:189 (1981): ibid. 103:218 (1981).
-
(1981)
Surf. Sci.
, vol.103
, pp. 189
-
-
Van Hove, M.A.1
Koestner, R.J.2
Stair, P.C.3
Biberian, J.P.4
Kesmodel, L.L.5
Bartos, I.6
Somorjai, G.A.7
-
11
-
-
4243215374
-
-
M. A. Van Hove, R. J. Koestner, P. C. Stair, J. P. Biberian, L. L. Kesmodel, I. Bartos, and G. A. Somorjai, Surf. Sci. 103:189 (1981): ibid. 103:218 (1981).
-
(1981)
Surf. Sci.
, vol.103
, pp. 218
-
-
-
15
-
-
0001784051
-
-
D. Y. Zemlyanov, M. Y. Smirnov, V. V. Gorodetskii, and J. H. Block, Surf. Sci. 329:61 (1995).
-
(1995)
Surf. Sci.
, vol.329
, pp. 61
-
-
Zemlyanov, D.Y.1
Smirnov, M.Y.2
Gorodetskii, V.V.3
Block, J.H.4
-
17
-
-
4244111971
-
-
L. K. Verheij, M. B. Hupschmidt, B. Poelsema, and G. Comsa, Surf. Sci. 233:209 (1990).
-
(1990)
Surf. Sci.
, vol.233
, pp. 209
-
-
Verheij, L.K.1
Hupschmidt, M.B.2
Poelsema, B.3
Comsa, G.4
-
18
-
-
0000982722
-
-
and references therein
-
V. P. Zhdanov, Phys. Rev. E 59:6292 (1999), and references therein.
-
(1999)
Phys. Rev. E
, vol.59
, pp. 6292
-
-
Zhdanov, V.P.1
-
19
-
-
0002039910
-
-
note
-
We use the general terminology cellular automata for the model described here by analogy with the lattice gas automaton approach used for the microscopic simulation of two-dimensional reaction-diffusion systems (ref. 6 above). The sequential updating in the present "automaton" makes the model equivalent to a lattice Monte-Carlo procedure.
-
-
-
-
20
-
-
4243593380
-
-
A theoretical mesoscopic approach to model traveling nanostructures in surface reactions, based on the assumption of strong attractive adsorbate-adsorbate interactions, is presented in M. Hildebrand, A. S. Mikhailov, and G. Ertl, Phys. Rev. Lett. 81:2602 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 2602
-
-
Hildebrand, M.1
Mikhailov, A.S.2
Ertl, G.3
|