메뉴 건너뛰기




Volumn 41, Issue 7, 2000, Pages 825-854

Blow-up for two nonlinear problems

Author keywords

[No Author keywords available]

Indexed keywords

BOUNDARY CONDITIONS; INTEGRODIFFERENTIAL EQUATIONS; PARTIAL DIFFERENTIAL EQUATIONS; SET THEORY; THEOREM PROVING;

EID: 0034277381     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0362-546X(98)00312-5     Document Type: Article
Times cited : (7)

References (17)
  • 1
    • 0001590177 scopus 로고
    • max for the solution of a semilinear heat equation
    • max for the solution of a semilinear heat equation, J. Funct. Anal. 71 (1987) 142-174.
    • (1987) J. Funct. Anal. , vol.71 , pp. 142-174
    • Baras, P.1    Cohen, L.2
  • 2
    • 84871758915 scopus 로고
    • Critère d'existence de solutions positives pour des équations semi-linéaires non monotones
    • P. Baras, M. Pierre, Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. Henri Poincaré 2(3) (1985) 185-212.
    • (1985) Ann. Inst. Henri Poincaré , vol.2 , Issue.3 , pp. 185-212
    • Baras, P.1    Pierre, M.2
  • 5
  • 6
    • 0007283369 scopus 로고
    • Blow-up solutions of a semilinear parabolic equation with the Neumann and Robin boundary conditions
    • Y.G. Chen, Blow-up solutions of a semilinear parabolic equation with the Neumann and Robin boundary conditions, J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 37 (1990) 537-574.
    • (1990) J. Fac. Sci. Univ. Tokyo Sect. IA, Math. , vol.37 , pp. 537-574
    • Chen, Y.G.1
  • 7
    • 50849145650 scopus 로고
    • Convergence, asymptotic periodicity and finite point blow-up in one-dimensional semilinear heat equation
    • X.Y. Chen, H. Matano, Convergence, asymptotic periodicity and finite point blow-up in one-dimensional semilinear heat equation, J. Differential Equations 78 (1989) 160-190.
    • (1989) J. Differential Equations , vol.78 , pp. 160-190
    • Chen, X.Y.1    Matano, H.2
  • 8
    • 0016643640 scopus 로고
    • Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems
    • M.G. Crandall, P.H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rat. Mech. Anal. 58 (1975) 207-218.
    • (1975) Arch. Rat. Mech. Anal. , vol.58 , pp. 207-218
    • Crandall, M.G.1    Rabinowitz, P.H.2
  • 9
    • 0000546335 scopus 로고
    • Blow-up of positive solutions of semilinear heat equations
    • A. Friedman, B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34(2) (1985) 425-447.
    • (1985) Indiana Univ. Math. J. , vol.34 , Issue.2 , pp. 425-447
    • Friedman, A.1    McLeod, B.2
  • 10
    • 0015557517 scopus 로고
    • Quasilinear Dirichlet problems driven by positive sources
    • D.D. Joseph, T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rat. Mech. Anal. 49 (1973) 241-269.
    • (1973) Arch. Rat. Mech. Anal. , vol.49 , pp. 241-269
    • Joseph, D.D.1    Lundgren, T.S.2
  • 11
    • 0001723872 scopus 로고
    • Positive solutions of convex nonlinear eigenvalue problems
    • H.B. Keller, J. Keener, Positive solutions of convex nonlinear eigenvalue problems, J. Differential Equations 16 (1974) 103-125.
    • (1974) J. Differential Equations , vol.16 , pp. 103-125
    • Keller, H.B.1    Keener, J.2
  • 12
    • 84974378755 scopus 로고
    • Global blow-up of a nonlinear heat equation
    • A.A. Lacey, Global blow-up of a nonlinear heat equation, Proc. Roy. Soc. Edinbugh 104A (1986) 161-167.
    • (1986) Proc. Roy. Soc. Edinbugh , vol.104 A , pp. 161-167
    • Lacey, A.A.1
  • 13
    • 0000001778 scopus 로고    scopus 로고
    • Uniqueness of weak extremal solutions of nonlinear elliptic problems
    • Y. Martel, Uniqueness of weak extremal solutions of nonlinear elliptic problems, Houston J. Math. 23 (1997) 161-168.
    • (1997) Houston J. Math. , vol.23 , pp. 161-168
    • Martel, Y.1
  • 15
    • 21844488832 scopus 로고
    • On the stability or instability of the singular solution of the semilinear heat equation with exponential reaction term
    • I. Peral, J.L. Vazquez, On the stability or instability of the singular solution of the semilinear heat equation with exponential reaction term, Arch. Rational Mech. Anal. 129 (1995) 201-224.
    • (1995) Arch. Rational Mech. Anal. , vol.129 , pp. 201-224
    • Peral, I.1    Vazquez, J.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.