-
1
-
-
38249035528
-
Global stability and periodic orbits for two-patch predator - Prey diffusion-delay models
-
E. Beretta, F. Solimano, Y. Takeuchi, Global stability and periodic orbits for two-patch predator - Prey diffusion-delay models, Math. Biosci. 85 (1987) 153-183.
-
(1987)
Math. Biosci.
, vol.85
, pp. 153-183
-
-
Beretta, E.1
Solimano, F.2
Takeuchi, Y.3
-
2
-
-
0023083590
-
Global stability of single species diffusion volterra models with continuous time delays
-
E. Beretta, Y. Takeuchi, Global stability of single species diffusion volterra models with continuous time delays, Bull. Math. Biosci. 49 (1987) 431-448.
-
(1987)
Bull. Math. Biosci.
, vol.49
, pp. 431-448
-
-
Beretta, E.1
Takeuchi, Y.2
-
4
-
-
0000262789
-
Global stability and predator dynamics in a model of prey dispersal in a patchy environment
-
H.I. Freedman, Y. Takeuchi, Global stability and predator dynamics in a model of prey dispersal in a patchy environment, Nonlinear Anal. 13 (1989) 993-1002.
-
(1989)
Nonlinear Anal.
, vol.13
, pp. 993-1002
-
-
Freedman, H.I.1
Takeuchi, Y.2
-
8
-
-
0002493295
-
A new detecting method for conditions of existence of Hopf bifurcation
-
S. Jiaqi, J. Zhujun, A new detecting method for conditions of existence of Hopf bifurcation, Acta Math. Appl. Sinica 11 (1) (1995) 79-93.
-
(1995)
Acta Math. Appl. Sinica
, vol.11
, Issue.1
, pp. 79-93
-
-
Jiaqi, S.1
Zhujun, J.2
-
10
-
-
0028359362
-
Predator - Prey dynamics in models of prey dispersal in two-patch environments
-
Y. Kuang, Y. Takeuchi, Predator - Prey dynamics in models of prey dispersal in two-patch environments, Math. Biosci. 120 (1994) 77-98.
-
(1994)
Math. Biosci.
, vol.120
, pp. 77-98
-
-
Kuang, Y.1
Takeuchi, Y.2
-
11
-
-
0001293981
-
Global stability in infinite delay Lotka - Volterra-type systems
-
Y. Kuang, H.L. Smith, Global stability in infinite delay Lotka - Volterra-type systems, J. Differential Equations 103 (1993) 221-246.
-
(1993)
J. Differential Equations
, vol.103
, pp. 221-246
-
-
Kuang, Y.1
Smith, H.L.2
-
13
-
-
0001610672
-
Conditions for global stability concerning a prey - Predator model with delay effects
-
A.W. Leung, Conditions for global stability concerning a prey - Predator model with delay effects, SIAM J. Appl. Math. 36 (1979) 281-286.
-
(1979)
SIAM J. Appl. Math.
, vol.36
, pp. 281-286
-
-
Leung, A.W.1
-
14
-
-
0000793907
-
Dispersion and population interactions
-
S.A. Levin, Dispersion and population interactions, Amer. Nat. 108 (1974) 207-228.
-
(1974)
Amer. Nat.
, vol.108
, pp. 207-228
-
-
Levin, S.A.1
-
15
-
-
0003289006
-
Time lags in biological models
-
Springer, New York
-
N. MacDonald, Time lags in biological models, Lecture Notes in Biomath., Vol. 27, Springer, New York, 1978.
-
(1978)
Lecture Notes in Biomath., Vol. 27
, vol.27
-
-
MacDonald, N.1
-
16
-
-
0009636209
-
Random dispersal in theoretical populations
-
J.D. Skellam, Random dispersal in theoretical populations, Biometrika 38 (1951) 196-218.
-
(1951)
Biometrika
, vol.38
, pp. 196-218
-
-
Skellam, J.D.1
-
17
-
-
0021018331
-
Existence of a globally asymptotically stable equilibrium in Volterra models with continuous time delay
-
F. Solimano, E. Beretta, Existence of a globally asymptotically stable equilibrium in Volterra models with continuous time delay, J. Math. Biol. 18 (1983) 93-102.
-
(1983)
J. Math. Biol.
, vol.18
, pp. 93-102
-
-
Solimano, F.1
Beretta, E.2
-
18
-
-
0024689676
-
Diffusion-mediated persistence in two-species competition Lotka - Volterra model
-
Y. Takeuchi, Diffusion-mediated persistence in two-species competition Lotka - Volterra model, Math. Biosci. 95 (1989) 65-83.
-
(1989)
Math. Biosci.
, vol.95
, pp. 65-83
-
-
Takeuchi, Y.1
-
19
-
-
0002296770
-
Cooperative systems theory and global stability of diffusion models
-
Y. Takeuchi, Cooperative systems theory and global stability of diffusion models, Acta. Appl. Math. 14 (1989) 49-57.
-
(1989)
Acta. Appl. Math.
, vol.14
, pp. 49-57
-
-
Takeuchi, Y.1
-
20
-
-
0029231575
-
Permanence and global stability for competitive Lotka - Volterra diffusion system
-
Y. Takeuchi, Z. Lu, Permanence and global stability for competitive Lotka - Volterra diffusion system, Nonlinear Anal. 24 (1995) 91-104.
-
(1995)
Nonlinear Anal.
, vol.24
, pp. 91-104
-
-
Takeuchi, Y.1
Lu, Z.2
-
21
-
-
0007289957
-
Hopf bifurcation and other dynamical behaviors for a four-order differential equation in models of infectious disease
-
J. Zhujun, L. Zhengrong, S. Jiaqi, Hopf bifurcation and other dynamical behaviors for a four-order differential equation in models of infectious disease, Acta Math. Appl. Sinica 10 (4) (1994) 401-410.
-
(1994)
Acta Math. Appl. Sinica
, vol.10
, Issue.4
, pp. 401-410
-
-
Zhujun, J.1
Zhengrong, L.2
Jiaqi, S.3
|