메뉴 건너뛰기




Volumn 41, Issue 7, 2000, Pages 1083-1096

Global stability and periodic orbits for a two-patch diffusion predator-prey model with time delays

Author keywords

[No Author keywords available]

Indexed keywords

BIFURCATION (MATHEMATICS); CONVERGENCE OF NUMERICAL METHODS; FUNCTIONS; LYAPUNOV METHODS; MATHEMATICAL MODELS; NONLINEAR EQUATIONS;

EID: 0034276513     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0362-546X(98)00330-7     Document Type: Article
Times cited : (7)

References (21)
  • 1
    • 38249035528 scopus 로고
    • Global stability and periodic orbits for two-patch predator - Prey diffusion-delay models
    • E. Beretta, F. Solimano, Y. Takeuchi, Global stability and periodic orbits for two-patch predator - Prey diffusion-delay models, Math. Biosci. 85 (1987) 153-183.
    • (1987) Math. Biosci. , vol.85 , pp. 153-183
    • Beretta, E.1    Solimano, F.2    Takeuchi, Y.3
  • 2
    • 0023083590 scopus 로고
    • Global stability of single species diffusion volterra models with continuous time delays
    • E. Beretta, Y. Takeuchi, Global stability of single species diffusion volterra models with continuous time delays, Bull. Math. Biosci. 49 (1987) 431-448.
    • (1987) Bull. Math. Biosci. , vol.49 , pp. 431-448
    • Beretta, E.1    Takeuchi, Y.2
  • 4
    • 0000262789 scopus 로고
    • Global stability and predator dynamics in a model of prey dispersal in a patchy environment
    • H.I. Freedman, Y. Takeuchi, Global stability and predator dynamics in a model of prey dispersal in a patchy environment, Nonlinear Anal. 13 (1989) 993-1002.
    • (1989) Nonlinear Anal. , vol.13 , pp. 993-1002
    • Freedman, H.I.1    Takeuchi, Y.2
  • 8
    • 0002493295 scopus 로고
    • A new detecting method for conditions of existence of Hopf bifurcation
    • S. Jiaqi, J. Zhujun, A new detecting method for conditions of existence of Hopf bifurcation, Acta Math. Appl. Sinica 11 (1) (1995) 79-93.
    • (1995) Acta Math. Appl. Sinica , vol.11 , Issue.1 , pp. 79-93
    • Jiaqi, S.1    Zhujun, J.2
  • 10
    • 0028359362 scopus 로고
    • Predator - Prey dynamics in models of prey dispersal in two-patch environments
    • Y. Kuang, Y. Takeuchi, Predator - Prey dynamics in models of prey dispersal in two-patch environments, Math. Biosci. 120 (1994) 77-98.
    • (1994) Math. Biosci. , vol.120 , pp. 77-98
    • Kuang, Y.1    Takeuchi, Y.2
  • 11
    • 0001293981 scopus 로고
    • Global stability in infinite delay Lotka - Volterra-type systems
    • Y. Kuang, H.L. Smith, Global stability in infinite delay Lotka - Volterra-type systems, J. Differential Equations 103 (1993) 221-246.
    • (1993) J. Differential Equations , vol.103 , pp. 221-246
    • Kuang, Y.1    Smith, H.L.2
  • 13
    • 0001610672 scopus 로고
    • Conditions for global stability concerning a prey - Predator model with delay effects
    • A.W. Leung, Conditions for global stability concerning a prey - Predator model with delay effects, SIAM J. Appl. Math. 36 (1979) 281-286.
    • (1979) SIAM J. Appl. Math. , vol.36 , pp. 281-286
    • Leung, A.W.1
  • 14
    • 0000793907 scopus 로고
    • Dispersion and population interactions
    • S.A. Levin, Dispersion and population interactions, Amer. Nat. 108 (1974) 207-228.
    • (1974) Amer. Nat. , vol.108 , pp. 207-228
    • Levin, S.A.1
  • 16
    • 0009636209 scopus 로고
    • Random dispersal in theoretical populations
    • J.D. Skellam, Random dispersal in theoretical populations, Biometrika 38 (1951) 196-218.
    • (1951) Biometrika , vol.38 , pp. 196-218
    • Skellam, J.D.1
  • 17
    • 0021018331 scopus 로고
    • Existence of a globally asymptotically stable equilibrium in Volterra models with continuous time delay
    • F. Solimano, E. Beretta, Existence of a globally asymptotically stable equilibrium in Volterra models with continuous time delay, J. Math. Biol. 18 (1983) 93-102.
    • (1983) J. Math. Biol. , vol.18 , pp. 93-102
    • Solimano, F.1    Beretta, E.2
  • 18
    • 0024689676 scopus 로고
    • Diffusion-mediated persistence in two-species competition Lotka - Volterra model
    • Y. Takeuchi, Diffusion-mediated persistence in two-species competition Lotka - Volterra model, Math. Biosci. 95 (1989) 65-83.
    • (1989) Math. Biosci. , vol.95 , pp. 65-83
    • Takeuchi, Y.1
  • 19
    • 0002296770 scopus 로고
    • Cooperative systems theory and global stability of diffusion models
    • Y. Takeuchi, Cooperative systems theory and global stability of diffusion models, Acta. Appl. Math. 14 (1989) 49-57.
    • (1989) Acta. Appl. Math. , vol.14 , pp. 49-57
    • Takeuchi, Y.1
  • 20
    • 0029231575 scopus 로고
    • Permanence and global stability for competitive Lotka - Volterra diffusion system
    • Y. Takeuchi, Z. Lu, Permanence and global stability for competitive Lotka - Volterra diffusion system, Nonlinear Anal. 24 (1995) 91-104.
    • (1995) Nonlinear Anal. , vol.24 , pp. 91-104
    • Takeuchi, Y.1    Lu, Z.2
  • 21
    • 0007289957 scopus 로고
    • Hopf bifurcation and other dynamical behaviors for a four-order differential equation in models of infectious disease
    • J. Zhujun, L. Zhengrong, S. Jiaqi, Hopf bifurcation and other dynamical behaviors for a four-order differential equation in models of infectious disease, Acta Math. Appl. Sinica 10 (4) (1994) 401-410.
    • (1994) Acta Math. Appl. Sinica , vol.10 , Issue.4 , pp. 401-410
    • Zhujun, J.1    Zhengrong, L.2    Jiaqi, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.