|
Volumn 53, Issue 3, 2000, Pages 225-237
|
Hybrid approach to analyze empirical software engineering data and its application to predict module fault-proneness in maintenance
|
Author keywords
[No Author keywords available]
|
Indexed keywords
COMPUTER SOFTWARE MAINTENANCE;
COMPUTER SYSTEM RECOVERY;
DATA REDUCTION;
KNOWLEDGE ENGINEERING;
KNOWLEDGE DISCOVERY;
LOGISTIC REGRESSION (LR);
ROUGH SETS (RS);
SOFTWARE ENGINEERING;
|
EID: 0034271117
PISSN: 01641212
EISSN: None
Source Type: Journal
DOI: 10.1016/S0164-1212(00)00014-5 Document Type: Article |
Times cited : (22)
|
References (13)
|