-
1
-
-
0001793498
-
Probability and the logic of conditionals
-
J. Hintikka, & P. Suppes. Amsterdam: North-Holland
-
Adams E.W. Probability and the logic of conditionals. Hintikka J., Suppes P. Aspects of Inductive Logic. 1966;253-316 North-Holland, Amsterdam.
-
(1966)
Aspects of Inductive Logic
, pp. 253-316
-
-
Adams, E.W.1
-
3
-
-
84990602723
-
Combining knowledge bases consisting in first order theories
-
Baral C., Kraus S., Minker J., Subrahmanian V.S. Combining knowledge bases consisting in first order theories. Comput. Intelligence. Vol. 8:(1):1992;45-71.
-
(1992)
Comput. Intelligence
, vol.8
, Issue.1
, pp. 45-71
-
-
Baral, C.1
Kraus, S.2
Minker, J.3
Subrahmanian, V.S.4
-
4
-
-
0002150682
-
Inconsistency management and prioritized syntax-based entailment
-
Benferhat S., Cayrol C., Dubois D., Lang J., Prade H. Inconsistency management and prioritized syntax-based entailment. Proc. IJCAI'93, Chambéry, France. 1993;640-645.
-
(1993)
Proc. IJCAI'93, Chambéry, France
, pp. 640-645
-
-
Benferhat, S.1
Cayrol, C.2
Dubois, D.3
Lang, J.4
Prade, H.5
-
5
-
-
0011040374
-
A general approach for inconsistency handling and merging information in prioritized knowledge bases
-
Benferhat S., Dubois D., Lang J., Prade H., Saffiotti A., Smets P. A general approach for inconsistency handling and merging information in prioritized knowledge bases. Proc. Sixth Conf. on Principles of Knowledge Representation and Reasoning (KR'98), Trento, Italy. 1998.
-
(1998)
Proc. Sixth Conf. on Principles of Knowledge Representation and Reasoning (KR'98), Trento, Italy
-
-
Benferhat, S.1
Dubois, D.2
Lang, J.3
Prade, H.4
Saffiotti, A.5
Smets, P.6
-
6
-
-
0002149656
-
Representing default rules in possibilistic logic
-
Benferhat S., Dubois D., Prade H. Representing default rules in possibilistic logic. Proc. 3rd Conf. on Principles of Knowledge Representation and Reasoning (KR'92), Cambridge, MA. 1992;673-684.
-
(1992)
Proc. 3rd Conf. on Principles of Knowledge Representation and Reasoning (KR'92), Cambridge, MA
, pp. 673-684
-
-
Benferhat, S.1
Dubois, D.2
Prade, H.3
-
7
-
-
0033319827
-
Possibilistic and standard probabilistic semantics of conditional knowledge bases
-
Benferhat S., Dubois D., Prade H. Possibilistic and standard probabilistic semantics of conditional knowledge bases. J. Logic Comput. Vol. 9:1999;873-895.
-
(1999)
J. Logic Comput.
, vol.9
, pp. 873-895
-
-
Benferhat, S.1
Dubois, D.2
Prade, H.3
-
10
-
-
0000342173
-
Preferred subtheories: An extended logical framework for default reasoning
-
Brewka G. Preferred subtheories: An extended logical framework for default reasoning. Proc. IJCAI'89, Detroit, MI. 1989;1043-1048.
-
(1989)
Proc. IJCAI'89, Detroit, MI
, pp. 1043-1048
-
-
Brewka, G.1
-
12
-
-
0001245395
-
Possibilistic logic
-
D.M. Gabbay, C.J. Hogger, J.A. Robinson, Nute D. Oxford University Press
-
Dubois D., Lang J., Prade H. Possibilistic logic. Gabbay D.M., Hogger C.J., Robinson J.A., Nute D. Handbook of Logic in Artificial Intelligence and Logic Programming. Vol. 3:1994;439-513 Oxford University Press.
-
(1994)
Handbook of Logic in Artificial Intelligence and Logic Programming
, vol.3
, pp. 439-513
-
-
Dubois, D.1
Lang, J.2
Prade, H.3
-
13
-
-
0343297209
-
Inconsistency in possibilistic knowledge bases - To live or not live with it
-
L.A. Zadeh, & J. Kacprzyk. New York: Wiley
-
Dubois D., Lang J., Prade H. Inconsistency in possibilistic knowledge bases - To live or not live with it. Zadeh L.A., Kacprzyk J. Fuzzy Logic for the Management of Uncertainty. 1992;335-351 Wiley, New York.
-
(1992)
Fuzzy Logic for the Management of Uncertainty
, pp. 335-351
-
-
Dubois, D.1
Lang, J.2
Prade, H.3
-
15
-
-
0037753879
-
Conditional objects, possibility theory and default rules
-
G. Crocco, L. Farinas del Cerro, & A. Herzig. Oxford University Press
-
Dubois D., Prade H. Conditional objects, possibility theory and default rules. Crocco G., Farinas del Cerro L., Herzig A. Conditionals: From Philosophy to Computer Sciences. 1995;311-346 Oxford University Press.
-
(1995)
Conditionals: From Philosophy to Computer Sciences
, pp. 311-346
-
-
Dubois, D.1
Prade, H.2
-
16
-
-
0041642753
-
Penalty logic and its link with Dempster-Shafer theory
-
Dupin de Saint Cyr F., Lang J., Schiex T. Penalty logic and its link with Dempster-Shafer theory. Proc. 10th Conference on Uncertainty in Artificial Intelligence (UAI-94), Seattle, WA. 1994;204-211.
-
(1994)
Proc. 10th Conference on Uncertainty in Artificial Intelligence (UAI-94), Seattle, WA
, pp. 204-211
-
-
Dupin De Saint Cyr, F.1
Lang, J.2
Schiex, T.3
-
17
-
-
0343732841
-
Complexity results for default reasoning from conditional knowledge bases
-
Eiter T., Lukasiewicz T. Complexity results for default reasoning from conditional knowledge bases. Principles of Knowledge Representation and Reasoning: Proceedings of the Seventh International Conference (KR'2000), Breckenridge, CO, April 2000. 2000;62-73.
-
(2000)
Principles of Knowledge Representation and Reasoning: Proceedings of the Seventh International Conference (KR'2000), Breckenridge, CO, April 2000
, pp. 62-73
-
-
Eiter, T.1
Lukasiewicz, T.2
-
18
-
-
0025503543
-
Using crude probability estimates to guide diagnosis
-
de Kleer J. Using crude probability estimates to guide diagnosis. Artificial Intelligence. Vol. 45:1990;381-391.
-
(1990)
Artificial Intelligence
, vol.45
, pp. 381-391
-
-
De Kleer, J.1
-
19
-
-
0002752749
-
Theoretical foundations for non-monotonic reasoning in expert systems
-
K.R. Apt. Berlin: Springer
-
Gabbay D.M. Theoretical foundations for non-monotonic reasoning in expert systems. Apt K.R. Logics and Models of Concurrent Systems. 1985;439-457 Springer, Berlin.
-
(1985)
Logics and Models of Concurrent Systems
, pp. 439-457
-
-
Gabbay, D.M.1
-
20
-
-
0028379075
-
Nonmonotonic inference based on expectations
-
Gärdenfors P., Makinson D. Nonmonotonic inference based on expectations. Artificial Intelligence. Vol. 65:1994;197-245.
-
(1994)
Artificial Intelligence
, vol.65
, pp. 197-245
-
-
Gärdenfors, P.1
Makinson, D.2
-
25
-
-
0030190238
-
Qualitative probabilities for default reasoning, belief revision, and causal modeling
-
Goldszmidt M., Pearl J. Qualitative probabilities for default reasoning, belief revision, and causal modeling. Artificial Intelligence. Vol. 84:1996;57-112.
-
(1996)
Artificial Intelligence
, vol.84
, pp. 57-112
-
-
Goldszmidt, M.1
Pearl, J.2
-
28
-
-
0342862287
-
Evidential reasoning in a categorial perspective: Conjunction and disjunction of belief functions
-
Kennes R. Evidential reasoning in a categorial perspective: Conjunction and disjunction of belief functions. Proc. 7th Conf. on Uncertainty in AI, Los Angeles, CA. 1991;174-181.
-
(1991)
Proc. 7th Conf. on Uncertainty in AI, Los Angeles, CA
, pp. 174-181
-
-
Kennes, R.1
-
29
-
-
0342862286
-
The dynamics of belief in the transferable belief model
-
San Mateo, CA: Morgan Kaufmann
-
Klawonn F., Smets Ph. The dynamics of belief in the transferable belief model. Proc. 8th Conf. on Uncertainty in AI. 1991;130-137 Morgan Kaufmann, San Mateo, CA.
-
(1991)
Proc. 8th Conf. on Uncertainty in AI
, pp. 130-137
-
-
Klawonn, F.1
Smets, Ph.2
-
31
-
-
0025462359
-
Non-monotonic reasoning, preferential models and cumulative logics
-
Kraus S., Lehmann D., Magidor M. Non-monotonic reasoning, preferential models and cumulative logics. Artificial Intelligence. Vol. 44:1990;167-207.
-
(1990)
Artificial Intelligence
, vol.44
, pp. 167-207
-
-
Kraus, S.1
Lehmann, D.2
Magidor, M.3
-
32
-
-
0342427663
-
Syntax-based default reasoning as probabilistic model-based diagnosis
-
Lang J. Syntax-based default reasoning as probabilistic model-based diagnosis. Proc. UAI'94, Seattle, WA. 1994;391-398.
-
(1994)
Proc. UAI'94, Seattle, WA
, pp. 391-398
-
-
Lang, J.1
-
34
-
-
21844498889
-
Another perspective on default reasoning
-
Lehmann D. Another perspective on default reasoning. Ann. Math. Artificial Intelligence. Vol. 15:1995;61-82.
-
(1995)
Ann. Math. Artificial Intelligence
, vol.15
, pp. 61-82
-
-
Lehmann, D.1
-
35
-
-
0026867827
-
What does a conditional knowledge base entail?
-
Lehmann D., Magidor M. What does a conditional knowledge base entail? Artificial Intelligence. Vol. 55:1992;1-60.
-
(1992)
Artificial Intelligence
, vol.55
, pp. 1-60
-
-
Lehmann, D.1
Magidor, M.2
-
36
-
-
84910776762
-
General theory of cumulative inference
-
M. Reinfrank, J. de Kleer, M.L. Ginsberg, & E. Sandewall. Berlin: Springer Non-Monotonic Reasoning, Proc. of the 2nd Internat. Workshop, Grassau, FRG, June 1988
-
Makinson D. General theory of cumulative inference. Reinfrank M., de Kleer J., Ginsberg M.L., Sandewall E. Non-Monotonic Reasoning, Proc. of the 2nd Internat. Workshop, Grassau, FRG, June 1988. Lecture Notes in Artif. Intell. Vol. 346:1989;1-18 Springer, Berlin.
-
(1989)
Lecture Notes in Artif. Intell.
, vol.346
, pp. 1-18
-
-
Makinson, D.1
-
37
-
-
84956085576
-
Internal set theory: A new approach to non-standard analysis
-
Nelson E. Internal set theory: A new approach to non-standard analysis. Bull. Amer. Math. Soc. Vol. 83:1977;1165-1198.
-
(1977)
Bull. Amer. Math. Soc.
, vol.83
, pp. 1165-1198
-
-
Nelson, E.1
-
38
-
-
85031578549
-
On proofs in System P
-
World Scientific Company, Singapore, to appear
-
S. Parsons, R.A. Bourne, On proofs in System P, Internat. J. Uncertainty, Fuzziness and Knowledge Base Systems, World Scientific Company, Singapore, to appear.
-
Internat. J. Uncertainty, Fuzziness and Knowledge Base Systems
-
-
Parsons, S.1
Bourne, R.A.2
-
41
-
-
0006411640
-
Average-case analysis of a search algorithm for estimating prior and posterior probabilities in Bayesian networks with extreme probabilities
-
Poole D. Average-case analysis of a search algorithm for estimating prior and posterior probabilities in Bayesian networks with extreme probabilities. Proc. IJCAI-93, Chambéry, France. 1993;606-612.
-
(1993)
Proc. IJCAI-93, Chambéry, France
, pp. 606-612
-
-
Poole, D.1
-
42
-
-
0003385351
-
Propositional nonmonotonic reasoning and inconsistency in symmetric neural networks
-
San Mateo, CA: Morgan Kaufmann
-
Pinkas G. Propositional nonmonotonic reasoning and inconsistency in symmetric neural networks. Proc. IJCAI-91, Sydney, Australia. 1991;525-530 Morgan Kaufmann, San Mateo, CA.
-
(1991)
Proc. IJCAI-91, Sydney, Australia
, pp. 525-530
-
-
Pinkas, G.1
-
43
-
-
49149147322
-
A logic for default reasoning
-
Reiter R. A logic for default reasoning. Artificial Intelligence. Vol. 13:1980;81-132.
-
(1980)
Artificial Intelligence
, vol.13
, pp. 81-132
-
-
Reiter, R.1
-
46
-
-
0032091641
-
Probabilistic semantics for Delgrande's conditional logic and a counterexample to his default logic
-
Schurz G. Probabilistic semantics for Delgrande's conditional logic and a counterexample to his default logic. Artificial Intelligence. Vol. 102:1998;81-95.
-
(1998)
Artificial Intelligence
, vol.102
, pp. 81-95
-
-
Schurz, G.1
-
49
-
-
0002286737
-
Belief functions
-
Ph. Smets, E.H. Mamdani, D. Dubois, & H. Prade. New York: Academic Press
-
Smets Ph. Belief functions. Smets Ph., Mamdani E.H., Dubois D., Prade H. Non-Standard Logics for Automated Reasoning. 1988;253-286 Academic Press, New York.
-
(1988)
Non-Standard Logics for Automated Reasoning
, pp. 253-286
-
-
Smets, Ph.1
-
50
-
-
0025434991
-
The combination of evidence in the transferable belief model
-
Smets Ph. The combination of evidence in the transferable belief model. IEEE Trans. Pattern Anal. Machine Intelligence. Vol. 12:1990;447-458.
-
(1990)
IEEE Trans. Pattern Anal. Machine Intelligence
, vol.12
, pp. 447-458
-
-
Smets, Ph.1
-
52
-
-
0031141157
-
The normative representation of quantified beliefs by belief functions
-
Smets Ph. The normative representation of quantified beliefs by belief functions. Artificial Intelligence. Vol. 92:1997;229-242.
-
(1997)
Artificial Intelligence
, vol.92
, pp. 229-242
-
-
Smets, Ph.1
-
53
-
-
84947764442
-
The α -junctions: Combination operators applicable to belief functions
-
D. Gabbay, R. Kruse, A. Nonnengart, & H.J. Ohlbach. Berlin: Springer
-
Smets Ph. The α -junctions: Combination operators applicable to belief functions. Gabbay D., Kruse R., Nonnengart A., Ohlbach H.J. Qualitative and Quantitative Practical Reasoning. 1997;131-153 Springer, Berlin.
-
(1997)
Qualitative and Quantitative Practical Reasoning
, pp. 131-153
-
-
Smets, Ph.1
-
54
-
-
0001099497
-
The transferable belief model for quantified belief representation
-
D.M. Gabbay, Smets Ph. Dordrecht: Kluwer
-
Smets Ph. The transferable belief model for quantified belief representation. Gabbay D.M., Smets Ph. Handbook of Defeasible Reasoning and Uncertainty Management Systems. Vol. 1:1998;267-301 Kluwer, Dordrecht.
-
(1998)
Handbook of Defeasible Reasoning and Uncertainty Management Systems
, vol.1
, pp. 267-301
-
-
Smets, Ph.1
-
55
-
-
0041462838
-
Default reasoning and the transferable belief model
-
P. Bonissone, M. Henrion, L. Kanal, & J. Lemmer. Amsterdam: North-Holland
-
Smets Ph., Hsia Y.-T. Default reasoning and the transferable belief model. Bonissone P., Henrion M., Kanal L., Lemmer J. Uncertainty in Artificial Intelligence 6. 1991;495-504 North-Holland, Amsterdam.
-
(1991)
Uncertainty in Artificial Intelligence 6
, pp. 495-504
-
-
Smets, Ph.1
Hsia, Y.-T.2
-
58
-
-
0033189058
-
Diverse confidence levels in a probabilistic semantics for conditional logics
-
Snow P. Diverse confidence levels in a probabilistic semantics for conditional logics. Artificial Intelligence. Vol. 113:1999;269-279.
-
(1999)
Artificial Intelligence
, vol.113
, pp. 269-279
-
-
Snow, P.1
-
59
-
-
0000731447
-
Ordinal conditional functions: A dynamic theory of epistemic states
-
W.L. Harper, & B. Skyrms. Dordrecht, Netherlands: Kluwer Academic Publishers
-
Spohn W. Ordinal conditional functions: A dynamic theory of epistemic states. Harper W.L., Skyrms B. Causation in Decision, Belief Change, and Statistics. 1988;105-134 Kluwer Academic Publishers, Dordrecht, Netherlands.
-
(1988)
Causation in Decision, Belief Change, and Statistics
, pp. 105-134
-
-
Spohn, W.1
-
60
-
-
0021002007
-
Implicit ordering of defaults in inheritance systems
-
Touretzky D. Implicit ordering of defaults in inheritance systems. Proc. AAAI-84, Austin, TX. 1984;322-325.
-
(1984)
Proc. AAAI-84, Austin, TX
, pp. 322-325
-
-
Touretzky, D.1
-
66
-
-
49349133217
-
Fuzzy sets as a basis for a theory of possibility
-
Zadeh L.A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Systems. Vol. 1:1978;3-28.
-
(1978)
Fuzzy Sets Systems
, vol.1
, pp. 3-28
-
-
Zadeh, L.A.1
|