메뉴 건너뛰기




Volumn 331, Issue 5, 2000, Pages 375-378

Smoothing effects and local existence theory for the nonlinear Schrödinger equations with non-constants coefficients;Effets régularisants et existence locale pour l'équation de Schrödinger non linéaire à coefficients variables

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0034259391     PISSN: 07644442     EISSN: None     Source Type: Journal    
DOI: 10.1016/s0764-4442(00)01664-5     Document Type: Article
Times cited : (2)

References (9)
  • 1
    • 0002738813 scopus 로고
    • Local existence for semilinear Schrödinger equations
    • [1] Chihara H., Local existence for semilinear Schrödinger equations, Math. Japonica 42 (1) (1995) 35-52.
    • (1995) Math. Japonica , vol.42 , Issue.1 , pp. 35-52
    • Chihara, H.1
  • 2
    • 84968508844 scopus 로고
    • Local smoothing properties of dispersive equations
    • [2] Constantin P., Saut J.-C., Local smoothing properties of dispersive equations, J. Amer. Math. Soc. 1 (1988) 413-439.
    • (1988) J. Amer. Math. Soc. , vol.1 , pp. 413-439
    • Constantin, P.1    Saut, J.-C.2
  • 3
    • 0002604507 scopus 로고    scopus 로고
    • Remarks on the Cauchy problem for Schrödinger type equations
    • [3] Doï S.-I., Remarks on the Cauchy problem for Schrödinger type equations, Comm. Partial Differ. Eq. 21 (1996) 163-178.
    • (1996) Comm. Partial Differ. Eq. , vol.21 , pp. 163-178
    • Doï, S.-I.1
  • 4
    • 0003155025 scopus 로고    scopus 로고
    • Smoothing effects of Schrödinger evolution groups on Riemannian manifolds
    • [4] Doï S.-I., Smoothing effects of Schrödinger evolution groups on Riemannian manifolds, Duke Math. J. 82 (3) (1996) 679-706.
    • (1996) Duke Math. J. , vol.82 , Issue.3 , pp. 679-706
    • Doï, S.-I.1
  • 5
    • 84972525950 scopus 로고
    • Remarks on nonlinear Schrödinger equations in one space dimension
    • [5] Hayashi N., Ozawa T., Remarks on nonlinear Schrödinger equations in one space dimension, Differ, and Integ. Eq. 7 (2) (1994) 453-461.
    • (1994) Differ, and Integ. Eq. , vol.7 , Issue.2 , pp. 453-461
    • Hayashi, N.1    Ozawa, T.2
  • 6
    • 84894536209 scopus 로고
    • Small solutions to nonlinear Schrödinger equations
    • [6] Kenig C., Ponce G., Vega L., Small solutions to nonlinear Schrödinger equations, Ann. Inst. Henri-Poincaré 10 (1993) 255-288.
    • (1993) Ann. Inst. Henri-poincaré , vol.10 , pp. 255-288
    • Kenig, C.1    Ponce, G.2    Vega, L.3
  • 7
    • 0039165707 scopus 로고    scopus 로고
    • Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations
    • [7] Kenig C., Ponce G., Vega L., Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. Math. 134 (3) (1998) 489-545.
    • (1998) Invent. Math. , vol.134 , Issue.3 , pp. 489-545
    • Kenig, C.1    Ponce, G.2    Vega, L.3
  • 8
    • 0001679726 scopus 로고
    • Regularity of solutions to the Schrödinger equations
    • [8] Sjölin P., Regularity of solutions to the Schrödinger equations, Duke Math. J. 55 (1987) 699-715.
    • (1987) Duke Math. J. , vol.55 , pp. 699-715
    • Sjölin, P.1
  • 9
    • 0000801121 scopus 로고
    • The Schrödinger equation: Pointwise convergence to the initial date
    • [9] Vega L., The Schrödinger equation: pointwise convergence to the initial date, Proc. Amer. Math. Soc. 102 (1988) 874-878.
    • (1988) Proc. Amer. Math. Soc. , vol.102 , pp. 874-878
    • Vega, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.