-
1
-
-
0026111213
-
Survey of Quantitative Feedback Theory (QFT)
-
Horowitz, I., 1991, “Survey of Quantitative Feedback Theory (QFT),” Int. J. Control, 53, No. 2, pp. 255-291.
-
(1991)
Int. J. Control
, vol.53
, Issue.2
, pp. 255-291
-
-
Horowitz, I.1
-
2
-
-
0026364209
-
Exact computation of the Horowitz bound for interval plants
-
Brown, M., and Petersen, I., 1991, “Exact computation of the Horowitz bound for interval plants,” Proc. of 30th IEEE Conf. on Decision and Control, pp. 2268-2273.
-
(1991)
Proc. Of 30Th IEEE Conf. On Decision and Control
, pp. 2268-2273
-
-
Brown, M.1
Petersen, I.2
-
3
-
-
0006900836
-
Design of feedback systems using Kharitonovs segments in Quantitative Feedback Theory
-
Dayton, Ohio
-
Fialho, I. J., Pande, V., and Nataraj, P. S. V., 1992, “Design of feedback systems using Kharitonov’s segments in Quantitative Feedback Theory,” Proc. First QFT Symposium, pp. 457-470, Dayton, Ohio.
-
(1992)
Proc. First QFT Symposium
, pp. 457-470
-
-
Fialho, I.J.1
Pande, V.2
Nataraj, P.S.V.3
-
4
-
-
0028728528
-
On generation of QFT bounds for general interval plants
-
Zhao, Y., and Jaisuriya, S., 1994, “On generation of QFT bounds for general interval plants,” ASME J. Dyn. Syst., Meas., Control, 116, No. 4, pp. 618-627.
-
(1994)
ASME J. Dyn. Syst., Meas., Control
, vol.116
, Issue.4
, pp. 618-627
-
-
Zhao, Y.1
Jaisuriya, S.2
-
5
-
-
0024107823
-
Two algorithms for frequency domain design of robust control systems
-
Bailey, F. N., Panzer, D., and Gu, G., 1988, “Two algorithms for frequency domain design of robust control systems,” Int. J. Control, 48, No. 5, pp. 1787-1806.
-
(1988)
Int. J. Control
, vol.48
, Issue.5
, pp. 1787-1806
-
-
Bailey, F.N.1
Panzer, D.2
Gu, G.3
-
6
-
-
0019623305
-
A new approach to optimum loop synthesis
-
East, D. J., 1981, “A new approach to optimum loop synthesis,” Int. J. Control, 34, No. 4, pp. 731-748.
-
(1981)
Int. J. Control
, vol.34
, Issue.4
, pp. 731-748
-
-
East, D.J.1
-
8
-
-
0018496001
-
A simple geometrical technique for determining loop frequency bounds which achieve prescribed sensitivity specifications
-
Longdon, L., and East, D. J., 1979, “A simple geometrical technique for determining loop frequency bounds which achieve prescribed sensitivity specifications,” Int. J. Control, 80, No. 1, pp. 153-158.
-
(1979)
Int. J. Control
, vol.80
, Issue.1
, pp. 153-158
-
-
Longdon, L.1
East, D.J.2
-
9
-
-
0002078941
-
“A MATLaB based toolbox for synthesis of lumped linear and nonlinear and distributed systems
-
Tucson, AZ
-
Nataraj, P. S. V., 1994, “A MATLaB based toolbox for synthesis of lumped linear and nonlinear and distributed systems,” IEEE/IFAC Symposium on Computer Aided Control System Design, pp. 513-518, Tucson, AZ.
-
(1994)
IEEE/IFAC Symposium on Computer Aided Control System Design
, pp. 513-518
-
-
Nataraj, P.S.V.1
-
10
-
-
0026364089
-
Equation for Loop Bound in Quantitative Feedback Theory
-
England
-
Wang, G. C., Chen, C. W., and Wang, S. H., 1991, “Equation for Loop Bound in Quantitative Feedback Theory,” Proc. IEEE Conf. Decision and Control, pp. 2968-2969, England.
-
(1991)
Proc. IEEE Conf. Decision and Control
, pp. 2968-2969
-
-
Wang, G.C.1
Chen, C.W.2
Wang, S.H.3
-
11
-
-
0004110167
-
-
Tel-Aviv University, Israel
-
Yaniv, O., 1990, QFT Software, Tel-Aviv University, Israel.
-
(1990)
QFT Software
-
-
Yaniv, O.1
-
12
-
-
0029376113
-
Single loop/QFT design for robust performance in the presence of non-parametric uncertainties
-
Chait, Y., Berghesani, C., and Zheng, Y., 1995, “Single loop/QFT design for robust performance in the presence of non-parametric uncertainties,” ASME J. Dyn. Syst., Meas., Control, 117, pp. 420-424.
-
(1995)
ASME J. Dyn. Syst., Meas., Control
, vol.117
, pp. 420-424
-
-
Chait, Y.1
Berghesani, C.2
Zheng, Y.3
-
13
-
-
0027391290
-
Multi-input/single-output computer-aided control design using the quantitative feedback theory
-
Chait, Y., and Yaniv, O., 1993, “Multi-input/single-output computer-aided control design using the quantitative feedback theory,” Int. J. Robust. Nonlinear Control, 3, No. 1, pp. 47-54.
-
(1993)
Int. J. Robust. Nonlinear Control
, vol.3
, Issue.1
, pp. 47-54
-
-
Chait, Y.1
Yaniv, O.2
-
14
-
-
0001223475
-
An efficient algorithm for computing QFT bounds
-
Rodrigues, J. M., Chait, Y., and Hollot, C. V., 1997, “An efficient algorithm for computing QFT bounds,” ASME J. Dyn. Syst., Meas., Control, 119, No. 3, pp. 548-552.
-
(1997)
ASME J. Dyn. Syst., Meas., Control
, vol.119
, Issue.3
, pp. 548-552
-
-
Rodrigues, J.M.1
Chait, Y.2
Hollot, C.V.3
-
15
-
-
0027559152
-
Direct control design in sampled-data uncertain systems
-
Yaniv, O., and Chait, Y., 1993, “Direct control design in sampled-data uncertain systems,” Automatica, 29, No. 2, pp. 365-372.
-
(1993)
Automatica
, vol.29
, Issue.2
, pp. 365-372
-
-
Yaniv, O.1
Chait, Y.2
-
16
-
-
0031369882
-
“A Template Generation Algorithm for Non-rational Transfer Functions in QFT Designs
-
San Diego, CA
-
Sardar, G., and Nataraj, P. S. V., 1997, “A Template Generation Algorithm for Non-rational Transfer Functions in QFT Designs,” Proc. 36th IEEE Conf. Decision and Control, pp. 2684-2689, San Diego, CA.
-
(1997)
Proc. 36Th IEEE Conf. Decision and Control
, pp. 2684-2689
-
-
Sardar, G.1
Nataraj, P.S.V.2
-
17
-
-
0033905386
-
Template generation for continuous transfer functions using interval analysis
-
Nataraj, P. S. V., and Sardar, G., 2000, “Template generation for continuous transfer functions using interval analysis,” Automatica, 36, pp. 111-119.
-
(2000)
Automatica
, vol.36
, pp. 111-119
-
-
Nataraj, P.S.V.1
Sardar, G.2
-
18
-
-
0003478307
-
-
The MathWorks, MA
-
Borghesani, C., Chait, Y., and O. Yaniv, 1995, The Quantitative Feedback Theory Toolbox for MATLAB, The MathWorks, MA.
-
(1995)
The Quantitative Feedback Theory Toolbox for MATLAB
-
-
Borghesani, C.1
Chait, Y.2
Yaniv, O.3
-
19
-
-
0003693662
-
-
Springer-Verlag, Berlin, Heidelberg
-
Klatte, R., Kulisch, U., Neaga, M., Ratz, D., and Ullrich, C., 1993, PASCAL-XSC Language Reference with Examples, Springer-Verlag, Berlin, Heidelberg.
-
(1993)
PASCAL-XSC Language Reference with Examples
-
-
Klatte, R.1
Kulisch, U.2
Neaga, M.3
Ratz, D.4
Ullrich, C.5
|