-
1
-
-
0000420259
-
Besicovitch type maximal operators and applications to Fourier analysis
-
J. BOURGAIN, Besicovitch type maximal operators and applications to Fourier analysis, Geom. Funct. Anal. 1 (1991), 147-187.
-
(1991)
Geom. Funct. Anal.
, vol.1
, pp. 147-187
-
-
Bourgain, J.1
-
2
-
-
0002447866
-
Some new estimates on oscillatory integrals
-
Princeton University Press, Princeton, NJ
-
_, Some new estimates on oscillatory integrals, in Essays in Fourier Analysis in honor of E. M. Stein, Princeton Math. Series 42, 83-112, Princeton University Press, Princeton, NJ (1995).
-
(1995)
Essays in Fourier Analysis in Honor of E. M. Stein, Princeton Math. Series
, vol.42
, pp. 83-112
-
-
-
3
-
-
0003182717
-
Estimates for cone multipliers
-
_, Estimates for cone multipliers, in Operator Theory: Adv. Appl. 77 (1995), 41-60.
-
(1995)
Operator Theory: Adv. Appl.
, vol.77
, pp. 41-60
-
-
-
4
-
-
0033447430
-
On the dimension of Kakeya sets and related maximal inequalities
-
_, On the dimension of Kakeya sets and related maximal inequalities, Geom. Funct. Anal. 9 (1999), 256-282.
-
(1999)
Geom. Funct. Anal.
, vol.9
, pp. 256-282
-
-
-
5
-
-
84966221814
-
Some remarks on subgroups of real numbers
-
P. ERDÖS, Some remarks on subgroups of real numbers, Colloq. Math. 42 (1979), 119-120.
-
(1979)
Colloq. Math.
, vol.42
, pp. 119-120
-
-
Erdös, P.1
-
6
-
-
84974112160
-
On the Hausdorff dimension of distance sets
-
K. J. FALCONER, On the Hausdorff dimension of distance sets, Mathematika 32 (1985), 206-212.
-
(1985)
Mathematika
, vol.32
, pp. 206-212
-
-
Falconer, K.J.1
-
7
-
-
0032361262
-
A new proof of Szemerédi's theorem for arithmetic progressions of length four
-
W. T. GOWERS, A new proof of Szemerédi's theorem for arithmetic progressions of length four, Geom. Funct. Anal. 8 (1998), 529-551.
-
(1998)
Geom. Funct. Anal.
, vol.8
, pp. 529-551
-
-
Gowers, W.T.1
-
8
-
-
0033235846
-
Bounds on arithmetic projections, and applications to the Kakeya conjecture
-
N. KATZ and T. TAO, Bounds on arithmetic projections, and applications to the Kakeya conjecture, Math. Res. Letters 6 (1999), 625-630.
-
(1999)
Math. Res. Letters
, vol.6
, pp. 625-630
-
-
Katz, N.1
Tao, T.2
-
11
-
-
0001289565
-
An inequality related to the isoperimetric inequality
-
L. H. LOOMIS and H. WHITNEY, An inequality related to the isoperimetric inequality, Bull. Amer. Math. Soc. 55 (1949), 961-962.
-
(1949)
Bull. Amer. Math. Soc.
, vol.55
, pp. 961-962
-
-
Loomis, L.H.1
Whitney, H.2
-
12
-
-
0001829451
-
Sums of finite sets
-
Springer-Verlag, New York
-
I. Z. RUZSA, Sums of finite sets, in Number Theory, 281-293, Springer-Verlag, New York, 1996.
-
(1996)
Number Theory
, pp. 281-293
-
-
Ruzsa, I.Z.1
-
13
-
-
0001380081
-
The Bochner-Riesz conjecture implies the restriction conjecture
-
T. TAO, The Bochner-Riesz conjecture implies the restriction conjecture, Duke Math. J. 96 (1999), 363-375.
-
(1999)
Duke Math. J.
, vol.96
, pp. 363-375
-
-
Tao, T.1
-
14
-
-
0034384186
-
A bilinear approach to cone multipliers. I. Restriction estimates
-
T. TAO and A. VARGAS, A bilinear approach to cone multipliers. I. Restriction estimates, Geom. Funct. Anal. 10 (2000), 185-215.
-
(2000)
Geom. Funct. Anal.
, vol.10
, pp. 185-215
-
-
Tao, T.1
Vargas, A.2
-
15
-
-
0034403909
-
A bilinear approach to cone multipliers. II. Applications
-
_, A bilinear approach to cone multipliers. II. Applications, Geom. Funct. Anal. 10 (2000), 216-258.
-
(2000)
Geom. Funct. Anal.
, vol.10
, pp. 216-258
-
-
-
16
-
-
0032343059
-
A bilinear approach to the restriction and Kakeya conjectures
-
T. TAO, A. VARGAS, and L. VEGA, A bilinear approach to the restriction and Kakeya conjectures, J. Amer. Math. Soc. 11 (1998), 967-1000.
-
(1998)
J. Amer. Math. Soc.
, vol.11
, pp. 967-1000
-
-
Tao, T.1
Vargas, A.2
Vega, L.3
-
17
-
-
21844498188
-
An improved bound for Kakeya type maximal functions
-
T. H. WOLFF, An improved bound for Kakeya type maximal functions, Rev. Mat. Iberoamericana 11 (1995), 651-674.
-
(1995)
Rev. Mat. Iberoamericana
, vol.11
, pp. 651-674
-
-
Wolff, T.H.1
-
18
-
-
0032282315
-
A mixed norm estimate for the X-ray transform
-
_, A mixed norm estimate for the X-ray transform, Rev. Mat. Iberoamericana 14 (1998), 561-600.
-
(1998)
Rev. Mat. Iberoamericana
, vol.14
, pp. 561-600
-
-
-
19
-
-
0002849466
-
Recent work connected with the Kakeya problem
-
Princeton, NJ, A.M.S., Providence, RI
-
_, Recent work connected with the Kakeya problem, in Prospects in Mathematics (Princeton, NJ, 1996), 129-162, A.M.S., Providence, RI, 1999.
-
(1996)
Prospects in Mathematics
, pp. 129-162
-
-
|