메뉴 건너뛰기




Volumn 127, Issue 3, 2000, Pages 137-156

Soft computing tools for transient classification

Author keywords

[No Author keywords available]

Indexed keywords

FUNCTIONS; FUZZY SETS; NUCLEAR POWER PLANTS; PROCESS CONTROL; RECURRENT NEURAL NETWORKS; ROBUSTNESS (CONTROL SYSTEMS);

EID: 0034250121     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0020-0255(00)00035-9     Document Type: Article
Times cited : (44)

References (24)
  • 2
    • 0030109164 scopus 로고    scopus 로고
    • Multiple-failure signal validation in nuclear power plants using artificial neural networks
    • March
    • P.F. Fantoni, A. Mazzola, Multiple-failure signal validation in nuclear power plants using artificial neural networks, Nucl. Technol., March 1996.
    • (1996) Nucl. Technol.
    • Fantoni, P.F.1    Mazzola, A.2
  • 4
    • 85031578621 scopus 로고    scopus 로고
    • A neuro-fuzzy model applied to full range signal validation of PWR nuclear power plant data
    • P.F. Fantoni, S. Figedy, A. Racz, B. Papin, A neuro-fuzzy model applied to full range signal validation of PWR nuclear power plant data, in: Proceedings of FLINS'98.
    • In: Proceedings of FLINS'98
    • Fantoni, P.F.1    Figedy, S.2    Racz, A.3    Papin, B.4
  • 5
    • 0026838959 scopus 로고
    • Nuclear power plant status diagnostics using an artificial neural network
    • Bartlett E.B., Uhrig R.E. Nuclear power plant status diagnostics using an artificial neural network. Nucl. Technol. 97:1992;272-281.
    • (1992) Nucl. Technol. , vol.97 , pp. 272-281
    • Bartlett, E.B.1    Uhrig, R.E.2
  • 6
    • 0028416380 scopus 로고
    • Detecting faults in a nuclear power plant by using a dynamic node architecture artificial neural network
    • A. Basu, E.B. Bartlett, Detecting faults in a nuclear power plant by using a dynamic node architecture artificial neural network, Nucl. Sci. Eng. 116 (1995).
    • (1995) Nucl. Sci. Eng. , vol.116
    • Basu, A.1    Bartlett, E.B.2
  • 7
    • 0029323251 scopus 로고
    • Nuclear power plant transient diagnostics using artificial neural networks that allow "don't-know" classifications
    • Y. Bartal, J. Lin, R.E. Uhrig, Nuclear power plant transient diagnostics using artificial neural networks that allow "don't-know" classifications, Nucl. Technol. 110 (1995).
    • (1995) Nucl. Technol. , vol.110
    • Bartal, Y.1    Lin, J.2    Uhrig, R.E.3
  • 10
    • 0030143770 scopus 로고    scopus 로고
    • Evaluation test of event identification method using neural network at Kashiwazaki Kariwa nuclear power station unit no. 4
    • Ohga Y., Arita S., Fukuzaki T., Takinawa N., Takano Y., Shiratory S., Wada T. Evaluation test of event identification method using neural network at Kashiwazaki Kariwa nuclear power station unit no. 4. J. Nucl. Sci. Technol. 33(5):1996;439-447.
    • (1996) J. Nucl. Sci. Technol. , vol.33 , Issue.5 , pp. 439-447
    • Ohga, Y.1    Arita, S.2    Fukuzaki, T.3    Takinawa, N.4    Takano, Y.5    Shiratory, S.6    Wada, T.7
  • 14
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman J.L. Finding structure in time. Cognitive Sci. 14:1990;179-211.
    • (1990) Cognitive Sci. , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 15
    • 0005316958 scopus 로고
    • Induction of multiscale temporal structure
    • in: Moody, Hanson, Lippman (Eds.), Morgan Kaufmann, Los Altos, CA
    • M.C. Mozer, Induction of multiscale temporal structure, in: Moody, Hanson, Lippman (Eds.), Advances in Neural Information Processing Systems 4, Morgan Kaufmann, Los Altos, CA, 1992, pp. 349-391.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 349-391
    • Mozer, M.C.1
  • 17
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D. Stacked generalization. Neural Networks. 5:1992;241-259.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.1
  • 18
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning. 24(2):1996;123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 20
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation and active learning
    • in: D. Tourtzky, T. Leen (Eds.), MIT Press, Cambridge, MA
    • A. Krogh, J. Vedelsby, Neural network ensembles, cross validation and active learning, in: D. Tourtzky, T. Leen (Eds.), Advances in Neural Information Processing Systems, vol. 7, MIT Press, Cambridge, MA, 1995, pp. 231-238.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 21
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Bengio Y., Simard P., Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks. 5(2):1994;157-166.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.