메뉴 건너뛰기




Volumn 85, Issue 7, 2000, Pages 1464-1467

Role of unstable directions in the equilibrium and aging dynamics of supercooled liquids

Author keywords

[No Author keywords available]

Indexed keywords

BINARY MIXTURES; COMPUTATIONAL METHODS; LIQUIDS; PHASE EQUILIBRIA; POTENTIAL ENERGY; SUPERCOOLING; SURFACES; THERMAL EFFECTS;

EID: 0034248192     PISSN: 00319007     EISSN: None     Source Type: Journal    
DOI: 10.1103/PhysRevLett.85.1464     Document Type: Article
Times cited : (84)

References (38)
  • 1
    • 0001432642 scopus 로고    scopus 로고
    • See, for example, R. Torre et al., Phys. Rev E 57, 1912 (1998); F. Sette et al., Science 280, 1550 (1998); L. Schneider et al., J. Non-Cryst. Solids 235-237, 173 (1998).
    • (1998) Phys. Rev E , vol.57 , pp. 1912
    • Torre, R.1
  • 2
    • 0032486182 scopus 로고    scopus 로고
    • See, for example, R. Torre et al., Phys. Rev E 57, 1912 (1998); F. Sette et al., Science 280, 1550 (1998); L. Schneider et al., J. Non-Cryst. Solids 235-237, 173 (1998).
    • (1998) Science , vol.280 , pp. 1550
    • Sette, F.1
  • 3
    • 0002967101 scopus 로고    scopus 로고
    • See, for example, R. Torre et al., Phys. Rev E 57, 1912 (1998); F. Sette et al., Science 280, 1550 (1998); L. Schneider et al., J. Non-Cryst. Solids 235-237, 173 (1998).
    • (1998) J. Non-Cryst. Solids , vol.235-237 , pp. 173
    • Schneider, L.1
  • 4
    • 0003764725 scopus 로고    scopus 로고
    • edited by M. Rubi and C. Perez-Vicente Springer, Berlin
    • K. Binder et al., in Complex Behavior of Glassy Systems edited by M. Rubi and C. Perez-Vicente (Springer, Berlin, 1997); W. Kob, J. Phys. Condens. Matter 11, R85 (1999).
    • (1997) Complex Behavior of Glassy Systems
    • Binder, K.1
  • 5
    • 4243861960 scopus 로고    scopus 로고
    • K. Binder et al., in Complex Behavior of Glassy Systems edited by M. Rubi and C. Perez-Vicente (Springer, Berlin, 1997); W. Kob, J. Phys. Condens. Matter 11, R85 (1999).
    • (1999) J. Phys. Condens. Matter , vol.11
    • Kob, W.1
  • 6
    • 0032508044 scopus 로고    scopus 로고
    • S. Sastry et al., Nature (London), 393, 554 (1998); A. Heuer, Phys. Rev. Lett. 78, 4051 (1997); F. Sciortino et al., Phys. Rev. Lett. 83, 3214 (1999); T. Schröder et al., J. Chem. Phys. 112, 9834 (2000); A. Scala et al., Nature (London) 406, 166 (2000).
    • (1998) Nature (London) , vol.393 , pp. 554
    • Sastry, S.1
  • 7
    • 4143079499 scopus 로고    scopus 로고
    • S. Sastry et al., Nature (London), 393, 554 (1998); A. Heuer, Phys. Rev. Lett. 78, 4051 (1997); F. Sciortino et al., Phys. Rev. Lett. 83, 3214 (1999); T. Schröder et al., J. Chem. Phys. 112, 9834 (2000); A. Scala et al., Nature (London) 406, 166 (2000).
    • (1997) Phys. Rev. Lett. , vol.78 , pp. 4051
    • Heuer, A.1
  • 8
    • 0042942352 scopus 로고    scopus 로고
    • S. Sastry et al., Nature (London), 393, 554 (1998); A. Heuer, Phys. Rev. Lett. 78, 4051 (1997); F. Sciortino et al., Phys. Rev. Lett. 83, 3214 (1999); T. Schröder et al., J. Chem. Phys. 112, 9834 (2000); A. Scala et al., Nature (London) 406, 166 (2000).
    • (1999) Phys. Rev. Lett. , vol.83 , pp. 3214
    • Sciortino, F.1
  • 9
    • 0033708163 scopus 로고    scopus 로고
    • S. Sastry et al., Nature (London), 393, 554 (1998); A. Heuer, Phys. Rev. Lett. 78, 4051 (1997); F. Sciortino et al., Phys. Rev. Lett. 83, 3214 (1999); T. Schröder et al., J. Chem. Phys. 112, 9834 (2000); A. Scala et al., Nature (London) 406, 166 (2000).
    • (2000) J. Chem. Phys. , vol.112 , pp. 9834
    • Schröder, T.1
  • 10
    • 0034644141 scopus 로고    scopus 로고
    • S. Sastry et al., Nature (London), 393, 554 (1998); A. Heuer, Phys. Rev. Lett. 78, 4051 (1997); F. Sciortino et al., Phys. Rev. Lett. 83, 3214 (1999); T. Schröder et al., J. Chem. Phys. 112, 9834 (2000); A. Scala et al., Nature (London) 406, 166 (2000).
    • (2000) Nature (London) , vol.406 , pp. 166
    • Scala, A.1
  • 12
  • 14
    • 0000446372 scopus 로고    scopus 로고
    • M. Mezard and G. Parisi, J. Phys. Condens. Matter 11, A157 (1999); M. Cardenas et al., J. Chem. Phys. 110, 1726 (1999).
    • (1999) J. Chem. Phys. , vol.110 , pp. 1726
    • Cardenas, M.1
  • 18
    • 34249837501 scopus 로고
    • T. R. Kirkpatrick and D. Thirumalai, Phys. Rev. Lett. 58, 2091 (1987); A. Crisanti and H.-J. Sommers, Z. Phys. B 87, 341 (1992).
    • (1992) Z. Phys. B , vol.87 , pp. 341
    • Crisanti, A.1    Sommers, H.-J.2
  • 20
    • 4243264015 scopus 로고
    • F. H. Stillinger and T. A. Weber, Phys. Rev. A 28, 2408 (1983); J. Chem. Phys. 80, 4434 (1984); P. G. Debenedetti et al., J. Phys. Chem. B 103, 10 258 (1999).
    • (1983) Phys. Rev. A , vol.28 , pp. 2408
    • Stillinger, F.H.1    Weber, T.A.2
  • 21
    • 0000539956 scopus 로고
    • F. H. Stillinger and T. A. Weber, Phys. Rev. A 28, 2408 (1983); J. Chem. Phys. 80, 4434 (1984); P. G. Debenedetti et al., J. Phys. Chem. B 103, 10 258 (1999).
    • (1984) J. Chem. Phys. , vol.80 , pp. 4434
  • 22
    • 0141481405 scopus 로고    scopus 로고
    • F. H. Stillinger and T. A. Weber, Phys. Rev. A 28, 2408 (1983); J. Chem. Phys. 80, 4434 (1984); P. G. Debenedetti et al., J. Phys. Chem. B 103, 10 258 (1999).
    • (1999) J. Phys. Chem. B , vol.103 , pp. 10258
    • Debenedetti, P.G.1
  • 23
    • 36449004640 scopus 로고
    • T. Keyes, J. Chem. Phys. 101, 5081 (1994); M. C. C. Ribeiro and P. A. Madden, J. Chem. Phys. 108, 3256 (1998).
    • (1994) J. Chem. Phys. , vol.101 , pp. 5081
    • Keyes, T.1
  • 27
    • 4043173511 scopus 로고    scopus 로고
    • S. D. Bembenek and B. B. Laird, Phys. Rev. Lett. 74, 936 (1995); J. Chem. Phys. 104, 5199 (1996).
    • (1996) J. Chem. Phys. , vol.104 , pp. 5199
  • 29
    • 25544470998 scopus 로고    scopus 로고
    • F. Sciortino and P. Tartaglia, Phys. Rev. Lett. 78, 2385 (1997); E. La Nave et al., Phys. Rev. Lett. 84, 4605 (2000).
    • (2000) Phys. Rev. Lett. , vol.84 , pp. 4605
    • La Nave, E.1
  • 31
    • 0343941568 scopus 로고    scopus 로고
    • note
    • 6 MD steps in the NVT ensemble (Nose-Hoover thermostat). One MD step is 0.02.
  • 33
    • 6444235056 scopus 로고
    • W. Kob and H. C. Andersen, Phys. Rev. Lett. 73, 1376 (1994); Phys. Rev. E 52, 4134 (1995).
    • (1995) Phys. Rev. E , vol.52 , pp. 4134
  • 34
    • 18144379379 scopus 로고    scopus 로고
    • Motion along a straight direction in configuration space will always be associated with a fast rise of the energy profile, since every direction will always describe pairs of atoms moving close enough to probe the repulsive part of the pair potentials [11]. In systems with steep repulsive potentials, such an unphysical rise of the potential energy profile along the straight eigenmode direction sets in very early. In other words, the eigenvector direction changes very rapidly as the system moves in configuration space and very soon the energy profile differs from the profile evaluated along the straight eigenvector approximation. The major effects of such an artificial rise in energy are [11] (i) the transformation of dw direction in sh directions and (ii) the arbitrary location of the two minima along the dw direction and the extremely low value of the one-dimensional barriers along the dw. In particular, effect (i) sets in when, in the studied direction, the system is located far from the saddle and effect (ii) sets in when the system is located close to the saddle point [T. Keyes and W.-X. Li, J. Chem. Phys. 111, 5503 (1999)]. Notwithstanding these potential pitfalls in the classification procedure, the classification helps in understanding the dynamical changes taking place in the liquid as a function of T and ρ. Indeed the only saddles which are relevant for the dynamical behavior of the system are the ones which are explored by the system, i.e., the ones located in a potential energy range V ± ΔV - where V is the average potential energy of the system and ΔV is a measure of the potential energy fluctuations. The accessed saddles are included in the type (ii) classification in the above list. As a result, the classification performed along straight directions retains its validity, even if no physical meaning can be attributed to the calculated one-dimensional energy profile. Of course, it would be more appropriate to recalculate the eigenvectors at each step and follow the curved one-dimensional energy profile. Such a procedure could still suffer from the frequent mode-crossing events which are known to characterize the liquid dynamics [M. Buchener and T. Dorfmüller, J. Mol. Liq. 65/66, 157 (1995)].
    • (1999) J. Chem. Phys. , vol.111 , pp. 5503
    • Keyes, T.1    Li, W.-X.2
  • 35
    • 0000854269 scopus 로고
    • Motion along a straight direction in configuration space will always be associated with a fast rise of the energy profile, since every direction will always describe pairs of atoms moving close enough to probe the repulsive part of the pair potentials [11]. In systems with steep repulsive potentials, such an unphysical rise of the potential energy profile along the straight eigenmode direction sets in very early. In other words, the eigenvector direction changes very rapidly as the system moves in configuration space and very soon the energy profile differs from the profile evaluated along the straight eigenvector approximation. The major effects of such an artificial rise in energy are [11] (i) the transformation of dw direction in sh directions and (ii) the arbitrary location of the two minima along the dw direction and the extremely low value of the one-dimensional barriers along the dw. In particular, effect (i) sets in when, in the studied direction, the system is located far from the saddle and effect (ii) sets in when the system is located close to the saddle point [T. Keyes and W.-X. Li, J. Chem. Phys. 111, 5503 (1999)]. Notwithstanding these potential pitfalls in the classification procedure, the classification helps in understanding the dynamical changes taking place in the liquid as a function of T and ρ. Indeed the only saddles which are relevant for the dynamical behavior of the system are the ones which are explored by the system, i.e., the ones located in a potential energy range V ± ΔV - where V is the average potential energy of the system and ΔV is a measure of the potential energy fluctuations. The accessed saddles are included in the type (ii) classification in the above list. As a result, the classification performed along straight directions retains its validity, even if no physical meaning can be attributed to the calculated one-dimensional energy profile. Of course, it would be more appropriate to recalculate the eigenvectors at each step and follow the curved one-dimensional energy profile. Such a procedure could still suffer from the frequent mode-crossing events which are known to characterize the liquid dynamics [M. Buchener and T. Dorfmüller, J. Mol. Liq. 65/66, 157 (1995)].
    • (1995) J. Mol. Liq. , vol.65-66 , pp. 157
    • Buchener, M.1    Dorfmüller, T.2
  • 36
    • 33847571392 scopus 로고    scopus 로고
    • note
    • Such an estimate of the free exploration to activated dynamics crossover temperature could be biased by the arbitrary choice of the IS configuration (the T = 0.446 configurations).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.