-
1
-
-
0001432642
-
-
See, for example, R. Torre et al., Phys. Rev E 57, 1912 (1998); F. Sette et al., Science 280, 1550 (1998); L. Schneider et al., J. Non-Cryst. Solids 235-237, 173 (1998).
-
(1998)
Phys. Rev E
, vol.57
, pp. 1912
-
-
Torre, R.1
-
2
-
-
0032486182
-
-
See, for example, R. Torre et al., Phys. Rev E 57, 1912 (1998); F. Sette et al., Science 280, 1550 (1998); L. Schneider et al., J. Non-Cryst. Solids 235-237, 173 (1998).
-
(1998)
Science
, vol.280
, pp. 1550
-
-
Sette, F.1
-
3
-
-
0002967101
-
-
See, for example, R. Torre et al., Phys. Rev E 57, 1912 (1998); F. Sette et al., Science 280, 1550 (1998); L. Schneider et al., J. Non-Cryst. Solids 235-237, 173 (1998).
-
(1998)
J. Non-Cryst. Solids
, vol.235-237
, pp. 173
-
-
Schneider, L.1
-
4
-
-
0003764725
-
-
edited by M. Rubi and C. Perez-Vicente Springer, Berlin
-
K. Binder et al., in Complex Behavior of Glassy Systems edited by M. Rubi and C. Perez-Vicente (Springer, Berlin, 1997); W. Kob, J. Phys. Condens. Matter 11, R85 (1999).
-
(1997)
Complex Behavior of Glassy Systems
-
-
Binder, K.1
-
5
-
-
4243861960
-
-
K. Binder et al., in Complex Behavior of Glassy Systems edited by M. Rubi and C. Perez-Vicente (Springer, Berlin, 1997); W. Kob, J. Phys. Condens. Matter 11, R85 (1999).
-
(1999)
J. Phys. Condens. Matter
, vol.11
-
-
Kob, W.1
-
6
-
-
0032508044
-
-
S. Sastry et al., Nature (London), 393, 554 (1998); A. Heuer, Phys. Rev. Lett. 78, 4051 (1997); F. Sciortino et al., Phys. Rev. Lett. 83, 3214 (1999); T. Schröder et al., J. Chem. Phys. 112, 9834 (2000); A. Scala et al., Nature (London) 406, 166 (2000).
-
(1998)
Nature (London)
, vol.393
, pp. 554
-
-
Sastry, S.1
-
7
-
-
4143079499
-
-
S. Sastry et al., Nature (London), 393, 554 (1998); A. Heuer, Phys. Rev. Lett. 78, 4051 (1997); F. Sciortino et al., Phys. Rev. Lett. 83, 3214 (1999); T. Schröder et al., J. Chem. Phys. 112, 9834 (2000); A. Scala et al., Nature (London) 406, 166 (2000).
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 4051
-
-
Heuer, A.1
-
8
-
-
0042942352
-
-
S. Sastry et al., Nature (London), 393, 554 (1998); A. Heuer, Phys. Rev. Lett. 78, 4051 (1997); F. Sciortino et al., Phys. Rev. Lett. 83, 3214 (1999); T. Schröder et al., J. Chem. Phys. 112, 9834 (2000); A. Scala et al., Nature (London) 406, 166 (2000).
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 3214
-
-
Sciortino, F.1
-
9
-
-
0033708163
-
-
S. Sastry et al., Nature (London), 393, 554 (1998); A. Heuer, Phys. Rev. Lett. 78, 4051 (1997); F. Sciortino et al., Phys. Rev. Lett. 83, 3214 (1999); T. Schröder et al., J. Chem. Phys. 112, 9834 (2000); A. Scala et al., Nature (London) 406, 166 (2000).
-
(2000)
J. Chem. Phys.
, vol.112
, pp. 9834
-
-
Schröder, T.1
-
10
-
-
0034644141
-
-
S. Sastry et al., Nature (London), 393, 554 (1998); A. Heuer, Phys. Rev. Lett. 78, 4051 (1997); F. Sciortino et al., Phys. Rev. Lett. 83, 3214 (1999); T. Schröder et al., J. Chem. Phys. 112, 9834 (2000); A. Scala et al., Nature (London) 406, 166 (2000).
-
(2000)
Nature (London)
, vol.406
, pp. 166
-
-
Scala, A.1
-
12
-
-
0003022180
-
-
W. Götze and L. Sjögren, Rep. Prog. Phys. 55, 241 (1992); W. Götze, J. Phys. Condens. Matter 11, A1 (1999).
-
(1999)
J. Phys. Condens. Matter
, vol.11
-
-
Götze, W.1
-
14
-
-
0000446372
-
-
M. Mezard and G. Parisi, J. Phys. Condens. Matter 11, A157 (1999); M. Cardenas et al., J. Chem. Phys. 110, 1726 (1999).
-
(1999)
J. Chem. Phys.
, vol.110
, pp. 1726
-
-
Cardenas, M.1
-
18
-
-
34249837501
-
-
T. R. Kirkpatrick and D. Thirumalai, Phys. Rev. Lett. 58, 2091 (1987); A. Crisanti and H.-J. Sommers, Z. Phys. B 87, 341 (1992).
-
(1992)
Z. Phys. B
, vol.87
, pp. 341
-
-
Crisanti, A.1
Sommers, H.-J.2
-
20
-
-
4243264015
-
-
F. H. Stillinger and T. A. Weber, Phys. Rev. A 28, 2408 (1983); J. Chem. Phys. 80, 4434 (1984); P. G. Debenedetti et al., J. Phys. Chem. B 103, 10 258 (1999).
-
(1983)
Phys. Rev. A
, vol.28
, pp. 2408
-
-
Stillinger, F.H.1
Weber, T.A.2
-
21
-
-
0000539956
-
-
F. H. Stillinger and T. A. Weber, Phys. Rev. A 28, 2408 (1983); J. Chem. Phys. 80, 4434 (1984); P. G. Debenedetti et al., J. Phys. Chem. B 103, 10 258 (1999).
-
(1984)
J. Chem. Phys.
, vol.80
, pp. 4434
-
-
-
22
-
-
0141481405
-
-
F. H. Stillinger and T. A. Weber, Phys. Rev. A 28, 2408 (1983); J. Chem. Phys. 80, 4434 (1984); P. G. Debenedetti et al., J. Phys. Chem. B 103, 10 258 (1999).
-
(1999)
J. Phys. Chem. B
, vol.103
, pp. 10258
-
-
Debenedetti, P.G.1
-
23
-
-
36449004640
-
-
T. Keyes, J. Chem. Phys. 101, 5081 (1994); M. C. C. Ribeiro and P. A. Madden, J. Chem. Phys. 108, 3256 (1998).
-
(1994)
J. Chem. Phys.
, vol.101
, pp. 5081
-
-
Keyes, T.1
-
27
-
-
4043173511
-
-
S. D. Bembenek and B. B. Laird, Phys. Rev. Lett. 74, 936 (1995); J. Chem. Phys. 104, 5199 (1996).
-
(1996)
J. Chem. Phys.
, vol.104
, pp. 5199
-
-
-
29
-
-
25544470998
-
-
F. Sciortino and P. Tartaglia, Phys. Rev. Lett. 78, 2385 (1997); E. La Nave et al., Phys. Rev. Lett. 84, 4605 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 4605
-
-
La Nave, E.1
-
31
-
-
0343941568
-
-
note
-
6 MD steps in the NVT ensemble (Nose-Hoover thermostat). One MD step is 0.02.
-
-
-
-
33
-
-
6444235056
-
-
W. Kob and H. C. Andersen, Phys. Rev. Lett. 73, 1376 (1994); Phys. Rev. E 52, 4134 (1995).
-
(1995)
Phys. Rev. E
, vol.52
, pp. 4134
-
-
-
34
-
-
18144379379
-
-
Motion along a straight direction in configuration space will always be associated with a fast rise of the energy profile, since every direction will always describe pairs of atoms moving close enough to probe the repulsive part of the pair potentials [11]. In systems with steep repulsive potentials, such an unphysical rise of the potential energy profile along the straight eigenmode direction sets in very early. In other words, the eigenvector direction changes very rapidly as the system moves in configuration space and very soon the energy profile differs from the profile evaluated along the straight eigenvector approximation. The major effects of such an artificial rise in energy are [11] (i) the transformation of dw direction in sh directions and (ii) the arbitrary location of the two minima along the dw direction and the extremely low value of the one-dimensional barriers along the dw. In particular, effect (i) sets in when, in the studied direction, the system is located far from the saddle and effect (ii) sets in when the system is located close to the saddle point [T. Keyes and W.-X. Li, J. Chem. Phys. 111, 5503 (1999)]. Notwithstanding these potential pitfalls in the classification procedure, the classification helps in understanding the dynamical changes taking place in the liquid as a function of T and ρ. Indeed the only saddles which are relevant for the dynamical behavior of the system are the ones which are explored by the system, i.e., the ones located in a potential energy range V ± ΔV - where V is the average potential energy of the system and ΔV is a measure of the potential energy fluctuations. The accessed saddles are included in the type (ii) classification in the above list. As a result, the classification performed along straight directions retains its validity, even if no physical meaning can be attributed to the calculated one-dimensional energy profile. Of course, it would be more appropriate to recalculate the eigenvectors at each step and follow the curved one-dimensional energy profile. Such a procedure could still suffer from the frequent mode-crossing events which are known to characterize the liquid dynamics [M. Buchener and T. Dorfmüller, J. Mol. Liq. 65/66, 157 (1995)].
-
(1999)
J. Chem. Phys.
, vol.111
, pp. 5503
-
-
Keyes, T.1
Li, W.-X.2
-
35
-
-
0000854269
-
-
Motion along a straight direction in configuration space will always be associated with a fast rise of the energy profile, since every direction will always describe pairs of atoms moving close enough to probe the repulsive part of the pair potentials [11]. In systems with steep repulsive potentials, such an unphysical rise of the potential energy profile along the straight eigenmode direction sets in very early. In other words, the eigenvector direction changes very rapidly as the system moves in configuration space and very soon the energy profile differs from the profile evaluated along the straight eigenvector approximation. The major effects of such an artificial rise in energy are [11] (i) the transformation of dw direction in sh directions and (ii) the arbitrary location of the two minima along the dw direction and the extremely low value of the one-dimensional barriers along the dw. In particular, effect (i) sets in when, in the studied direction, the system is located far from the saddle and effect (ii) sets in when the system is located close to the saddle point [T. Keyes and W.-X. Li, J. Chem. Phys. 111, 5503 (1999)]. Notwithstanding these potential pitfalls in the classification procedure, the classification helps in understanding the dynamical changes taking place in the liquid as a function of T and ρ. Indeed the only saddles which are relevant for the dynamical behavior of the system are the ones which are explored by the system, i.e., the ones located in a potential energy range V ± ΔV - where V is the average potential energy of the system and ΔV is a measure of the potential energy fluctuations. The accessed saddles are included in the type (ii) classification in the above list. As a result, the classification performed along straight directions retains its validity, even if no physical meaning can be attributed to the calculated one-dimensional energy profile. Of course, it would be more appropriate to recalculate the eigenvectors at each step and follow the curved one-dimensional energy profile. Such a procedure could still suffer from the frequent mode-crossing events which are known to characterize the liquid dynamics [M. Buchener and T. Dorfmüller, J. Mol. Liq. 65/66, 157 (1995)].
-
(1995)
J. Mol. Liq.
, vol.65-66
, pp. 157
-
-
Buchener, M.1
Dorfmüller, T.2
-
36
-
-
33847571392
-
-
note
-
Such an estimate of the free exploration to activated dynamics crossover temperature could be biased by the arbitrary choice of the IS configuration (the T = 0.446 configurations).
-
-
-
|