-
1
-
-
0000784287
-
-
Such "classical limit" states of hydrogen were first examined by L.S. Brown, Am. J. Phys. 41, 525 (1973); Analysis of the classical dynamics of electron wave packets formed by pico- second laser pulses in Rydberg atoms was presented by J. Parker and C.R. Stroud, Jr., Phys. Scr. T12, 70 (1986).
-
(1973)
Am. J. Phys.
, vol.41
, pp. 525
-
-
Brown, L.S.1
-
2
-
-
84916599621
-
-
Such "classical limit" states of hydrogen were first examined by L.S. Brown, Am. J. Phys. 41, 525 (1973); Analysis of the classical dynamics of electron wave packets formed by pico-second laser pulses in Rydberg atoms was presented by J. Parker and C.R. Stroud, Jr., Phys. Scr. T12, 70 (1986).
-
(1986)
Phys. Scr.
, vol.T12
, pp. 70
-
-
Parker, J.1
Stroud C.R., Jr.2
-
3
-
-
0000558706
-
-
Revivals of Rydberg atomic-electron wave packets were discovered by J. Parker and C.R. Stroud, Jr., Phys. Rev. Lett. 56, 716 (1986); The general theory of fractional revivals was developed by I.Sh. Averbukh and N.F. Perelman, Phys. Lett. A 139, 449 (1989).
-
(1986)
Phys. Rev. Lett.
, vol.56
, pp. 716
-
-
Parker, J.1
Stroud C.R., Jr.2
-
4
-
-
4244045533
-
-
Revivals of Rydberg atomic-electron wave packets were discovered by J. Parker and C.R. Stroud, Jr., Phys. Rev. Lett. 56, 716 (1986); The general theory of fractional revivals was developed by I.Sh. Averbukh and N.F. Perelman, Phys. Lett. A 139, 449 (1989).
-
(1989)
Phys. Lett. A
, vol.139
, pp. 449
-
-
Averbukh, I.Sh.1
Perelman, N.F.2
-
5
-
-
0346532987
-
-
Super-revivals of Rydberg wave packets have been examined, for example, by R. Bluhm and V.A. Kostelecký, Phys. Lett. A 200, 308 (1995); and R. Bluhm and V.A. Kostelecký, Phys. Rev. A 51, 4767 (1995).
-
(1995)
Phys. Lett. A
, vol.200
, pp. 308
-
-
Bluhm, R.1
Kostelecký, V.A.2
-
6
-
-
23944451862
-
-
Super-revivals of Rydberg wave packets have been examined, for example, by R. Bluhm and V.A. Kostelecký, Phys. Lett. A 200, 308 (1995); and R. Bluhm and V.A. Kostelecký, Phys. Rev. A 51, 4767 (1995).
-
(1995)
Phys. Rev. A
, vol.51
, pp. 4767
-
-
Bluhm, R.1
Kostelecký, V.A.2
-
7
-
-
0000419090
-
-
Revival phenomena in systems with two quantum numbers have been considered, for example, by R. Bluhm, V.A. Kostelecký, and B. Tudose, Phys. Lett. A 222, 220 (1996); G.S. Agarwal and J. Banerji, Phys. Rev. A 57, 3880 (1998); and J. Banerji and G.S. Agarwal, Opt. Express 5, 220 (1999).
-
(1996)
Phys. Lett. A
, vol.222
, pp. 220
-
-
Bluhm, R.1
Kostelecký, V.A.2
Tudose, B.3
-
8
-
-
0001308403
-
-
Revival phenomena in systems with two quantum numbers have been considered, for example, by R. Bluhm, V.A. Kostelecký, and B. Tudose, Phys. Lett. A 222, 220 (1996); G.S. Agarwal and J. Banerji, Phys. Rev. A 57, 3880 (1998); and J. Banerji and G.S. Agarwal, Opt. Express 5, 220 (1999).
-
(1998)
Phys. Rev. A
, vol.57
, pp. 3880
-
-
Agarwal, G.S.1
Banerji, J.2
-
9
-
-
0037864728
-
-
Revival phenomena in systems with two quantum numbers have been considered, for example, by R. Bluhm, V.A. Kostelecký, and B. Tudose, Phys. Lett. A 222, 220 (1996); G.S. Agarwal and J. Banerji, Phys. Rev. A 57, 3880 (1998); and J. Banerji and G.S. Agarwal, Opt. Express 5, 220 (1999).
-
(1999)
Opt. Express
, vol.5
, pp. 220
-
-
Banerji, J.1
Agarwal, G.S.2
-
10
-
-
0030569144
-
-
C. Leichtle, I.Sh. Averbukh, and W.P. Schleich, Phys. Rev. Lett. 77, 3999 (1996); C. Leichtle, I.Sh. Averbukh, and W.P. Schleich, Phys. Rev. A 54, 5299 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 3999
-
-
Leichtle, C.1
Averbukh, I.Sh.2
Schleich, W.P.3
-
11
-
-
0000281183
-
-
C. Leichtle, I.Sh. Averbukh, and W.P. Schleich, Phys. Rev. Lett. 77, 3999 (1996); C. Leichtle, I.Sh. Averbukh, and W.P. Schleich, Phys. Rev. A 54, 5299 (1996).
-
(1996)
Phys. Rev. A
, vol.54
, pp. 5299
-
-
Leichtle, C.1
Averbukh, I.Sh.2
Schleich, W.P.3
-
15
-
-
0011846079
-
-
Prentice-Hall, Englewood Cliffs, NJ
-
For example, see H.C. Ohanian, Principles of Quantum Mechanics (Prentice-Hall, Englewood Cliffs, NJ, 1990), pp. 78-84; R.L. Liboff, Introductory Quantum Mechanics, 2nd ed. (Addison-Wesley, Reading, MA, 1992), pp. 275-284; and S. Gasiorowicz, Quantum Physics, 2nd ed. (Wiley, New York, 1996), pp. 78-83.
-
(1990)
Principles of Quantum Mechanics
, pp. 78-84
-
-
Ohanian, H.C.1
-
16
-
-
0004085708
-
-
Addison-Wesley, Reading, MA
-
For example, see H.C. Ohanian, Principles of Quantum Mechanics (Prentice-Hall, Englewood Cliffs, NJ, 1990), pp. 78- 84; R.L. Liboff, Introductory Quantum Mechanics, 2nd ed. (Addison-Wesley, Reading, MA, 1992), pp. 275-284; and S. Gasiorowicz, Quantum Physics, 2nd ed. (Wiley, New York, 1996), pp. 78-83.
-
(1992)
Introductory Quantum Mechanics, 2nd Ed.
, pp. 275-284
-
-
Liboff, R.L.1
-
17
-
-
0004272024
-
-
Wiley, New York
-
For example, see H.C. Ohanian, Principles of Quantum Mechanics (Prentice-Hall, Englewood Cliffs, NJ, 1990), pp. 78- 84; R.L. Liboff, Introductory Quantum Mechanics, 2nd ed. (Addison-Wesley, Reading, MA, 1992), pp. 275-284; and S. Gasiorowicz, Quantum Physics, 2nd ed. (Wiley, New York, 1996), pp. 78-83.
-
(1996)
Quantum Physics, 2nd Ed.
, pp. 78-83
-
-
Gasiorowicz, S.1
-
18
-
-
0001304268
-
-
B.I. Barker, G.H. Rayborn, J.W. Ioup, and G.E. Ioup, Am. J. Phys. 59, 1038 (1991).
-
(1991)
Am. J. Phys.
, vol.59
, pp. 1038
-
-
Barker, B.I.1
Rayborn, G.H.2
Ioup, J.W.3
Ioup, G.E.4
-
20
-
-
0003952728
-
-
McGraw-Hill, New York
-
P.M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), Vol. 1, pp. 411-413; Handbook of Mathematical Functions edited by M. Abramowitz and I.A. Stegun (Dover, New York, 1972), p. 16.
-
(1953)
Methods of Theoretical Physics
, vol.1
, pp. 411-413
-
-
Morse, P.M.1
Feshbach, H.2
-
21
-
-
0004245694
-
-
Dover, New York
-
P.M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), Vol. 1, pp. 411-413; Handbook of Mathematical Functions edited by M. Abramowitz and I.A. Stegun (Dover, New York, 1972), p. 16.
-
(1972)
Handbook of Mathematical Functions
, pp. 16
-
-
Abramowitz, M.1
Stegun, I.A.2
-
24
-
-
0343448390
-
-
note
-
2n). The results of Knospe and Schmidt [17], used in Secs. III D 1-III D 3, require that the value of n̄ be restricted to integer values.
-
-
-
-
25
-
-
6244265526
-
-
Visualizing quantum dynamics via the autocorrelation function has been emphasized in research into semiclassical (Van Vleck-Gutzwiller) methods; for example, see S. Tomsovic and E.J. Heller, Phys. Rev. Lett. 67, 664 (1991). Physically, the autocorrelation function is important because it is directly related to the ionization signal in pump-probe experiments.
-
(1991)
Phys. Rev. Lett.
, vol.67
, pp. 664
-
-
Tomsovic, S.1
Heller, E.J.2
-
27
-
-
0343012799
-
-
note
-
The energy spectrum at the well bottom was computed by Barker et al. [10] and by Sprung, Wu, and Martorell [11]. These authors give numerical examples comparing the predictions of Eq. (23) with the exact values of energy, and the series solution is found to converge very rapidly at the bottom of the well. Here we are concerned with the related issue of how truncating Eq. (23) affects predictions of the dynamics in the square well.
-
-
-
|