-
1
-
-
0023563286
-
A learning rule for asynchronous perceptrons with feedback in combinatorial environment
-
Almeida, L. B. (1987). A learning rule for asynchronous perceptrons with feedback in combinatorial environment. In Proc. Int. Conf. on Neural Networks (Vol. 2, pp. 609-618).
-
(1987)
Proc. Int. Conf. on Neural Networks
, vol.2
, pp. 609-618
-
-
Almeida, L.B.1
-
2
-
-
0000029787
-
FIR and IIR synapses, a new neural network architecture for time series modelling
-
Back, A. D., & Tsoi, A. C. (1991). FIR and IIR synapses, a new neural network architecture for time series modelling. Neural Computation, 3, 375-385.
-
(1991)
Neural Computation
, vol.3
, pp. 375-385
-
-
Back, A.D.1
Tsoi, A.C.2
-
3
-
-
0000105056
-
Relating real-time backpropagation and backpropagation-through-time: An application of flow graph interreciprocity
-
Beaufays, F., & Wan, E. (1994). Relating real-time backpropagation and backpropagation-through-time: An application of flow graph interreciprocity. Neural Computation, 6, 296-306.
-
(1994)
Neural Computation
, vol.6
, pp. 296-306
-
-
Beaufays, F.1
Wan, E.2
-
4
-
-
0003545065
-
A circuit theory approach to recurrent neural network architectures and learning methods
-
University of Bologna, Italy. PDF available online campolucci_P or requested from campoluc@tiscalinet.it
-
Campolucci, P. (1998). A circuit theory approach to recurrent neural network architectures and learning methods. Doctoral dissertation in English, University of Bologna, Italy. PDF available online at http://nnsp.eealab.unian.it/ campolucci_P or requested from campoluc@tiscalinet.it.
-
(1998)
Doctoral Dissertation in English
-
-
Campolucci, P.1
-
5
-
-
0030650652
-
Signal-flow-graph derivation of on-line gradient learning algorithms
-
Houston, TX
-
Campolucci, P., Marchegiani, A., Uncini, A., & Piazza, F. (1997). Signal-flow-graph derivation of on-line gradient learning algorithms. In Proc. ICNN-97, IEEE Int. Conference on Neural Networks (Houston, TX).
-
(1997)
Proc. ICNN-97, IEEE Int. Conference on Neural Networks
-
-
Campolucci, P.1
Marchegiani, A.2
Uncini, A.3
Piazza, F.4
-
7
-
-
0031623998
-
Dynamical systems learning by a circuit theoretic approach
-
Campolucci, P., Uncini, A., & Piazza, F. (1998). Dynamical systems learning by a circuit theoretic approach. Proc. ISCAS-98, IEEE Int. Symposium on Circuits and Systems.
-
(1998)
Proc. ISCAS-98, IEEE Int. Symposium on Circuits and Systems
-
-
Campolucci, P.1
Uncini, A.2
Piazza, F.3
-
8
-
-
0033098443
-
On-line learning algorithms for locally recurrent neural networks
-
Campolucci, P., Uncini, A., Piazza, F., & Rao, B. D. (1999). On-line learning algorithms for locally recurrent neural networks. IEEE Trans. on Neural Networks, 10, 253-271.
-
(1999)
IEEE Trans. on Neural Networks
, vol.10
, pp. 253-271
-
-
Campolucci, P.1
Uncini, A.2
Piazza, F.3
Rao, B.D.4
-
10
-
-
0024939338
-
A learning algorithm for analog, fully recurrent neural networks
-
Gherrity, M. (1989). A learning algorithm for analog, fully recurrent neural networks. In Proc. Int. Joint Conference Neural Networks, (Vol. 1, pp. 643-644).
-
(1989)
Proc. Int. Joint Conference Neural Networks
, vol.1
, pp. 643-644
-
-
Gherrity, M.1
-
12
-
-
0001039722
-
An experimental comparison of recurrent neural networks
-
G. Tasauro, D. Touretzky, & T. Leen (Eds.), Cambridge, MA: MIT Press
-
Horne, B. G., & Giles, C. L. (1995). An experimental comparison of recurrent neural networks. In G. Tasauro, D. Touretzky, & T. Leen (Eds.), Advances in neural information processing systems, 7 Cambridge, MA: MIT Press.
-
(1995)
Advances in Neural Information Processing Systems
, pp. 7
-
-
Horne, B.G.1
Giles, C.L.2
-
13
-
-
0016036846
-
Signal flow graphs - Computer-aided system analysis and sensitivity calculations
-
Lee, A. Y. (1974). Signal flow graphs - Computer-aided system analysis and sensitivity calculations. IEEE Transactions on Circuits and Systems, cas-21, 209-216.
-
(1974)
IEEE Transactions on Circuits and Systems, Cas-21
, pp. 209-216
-
-
Lee, A.Y.1
-
15
-
-
84899344001
-
Feedback theory - Some properties of signal-flow graphs
-
Mason, S. J. (1953). Feedback theory - Some properties of signal-flow graphs. Proc. Institute of Radio Engineers, 41, 1144-1156.
-
(1953)
Proc. Institute of Radio Engineers
, vol.41
, pp. 1144-1156
-
-
Mason, S.J.1
-
16
-
-
84858315580
-
Feedback theory - Further properties of signal-flow graphs
-
Mason, S. J. (1956). Feedback theory - Further properties of signal-flow graphs. Proc. Institute of Radio Engineers, 44, 920-926.
-
(1956)
Proc. Institute of Radio Engineers
, vol.44
, pp. 920-926
-
-
Mason, S.J.1
-
17
-
-
0026117466
-
Gradient methods for the optimization of dynamical systems containing neural networks
-
Narendra, K. S., Parthasarathy, K. (1991). Gradient methods for the optimization of dynamical systems containing neural networks. IEEE Trans. on Neural Networks, 2, 252-262.
-
(1991)
IEEE Trans. on Neural Networks
, vol.2
, pp. 252-262
-
-
Narendra, K.S.1
Parthasarathy, K.2
-
18
-
-
0001382203
-
Neural networks and nonlinear adaptive filtering: Unifying concepts and new algorithms
-
Nerrand, O., Roussel-Ragot, P., Personnaz, L., Dreyfus, G., & Marcos, S. (1993). Neural networks and nonlinear adaptive filtering: Unifying concepts and new algorithms. Neural Computation, 5 165-199.
-
(1993)
Neural Computation
, vol.5
, pp. 165-199
-
-
Nerrand, O.1
Roussel-Ragot, P.2
Personnaz, L.3
Dreyfus, G.4
Marcos, S.5
-
20
-
-
0027969639
-
Signal flow graphs and neural networks
-
Osowski, S. (1994). Signal flow graphs and neural networks. Biological Cybernetics, 70, 387-395.
-
(1994)
Biological Cybernetics
, vol.70
, pp. 387-395
-
-
Osowski, S.1
-
21
-
-
0029375851
-
Gradient calculations for dynamic recurrent neural networks: A survey
-
Pearlmutter, B. A. (1995). Gradient calculations for dynamic recurrent neural networks: A survey. IEEE Trans. on Neural Networks, 6, 1212-1228.
-
(1995)
IEEE Trans. on Neural Networks
, vol.6
, pp. 1212-1228
-
-
Pearlmutter, B.A.1
-
22
-
-
0003918513
-
-
Cambridge, MA: MIT Press
-
Penfield, P., Spence, R., & Duiker, S. (1970). Tellegen's theorem and electrical networks. Cambridge, MA: MIT Press.
-
(1970)
Tellegen's Theorem and Electrical Networks
-
-
Penfield, P.1
Spence, R.2
Duiker, S.3
-
23
-
-
0028392484
-
Backpropagation through adjoints for the identification of non linear dynamic systems using recurrent neural models
-
Srinivasan, B., Prasad, U. R., & Rao, N. J. (1994). Backpropagation through adjoints for the identification of non linear dynamic systems using recurrent neural models. IEEE Trans. on Neural Networks, 5, 213-228.
-
(1994)
IEEE Trans. on Neural Networks
, vol.5
, pp. 213-228
-
-
Srinivasan, B.1
Prasad, U.R.2
Rao, N.J.3
-
24
-
-
0003896099
-
A general network theorem, with applications
-
Tellegen, B. D. H. (1952). A general network theorem, with applications. Philips Res. Rep., 7, 259-269.
-
(1952)
Philips Res. Rep.
, vol.7
, pp. 259-269
-
-
Tellegen, B.D.H.1
-
25
-
-
0028392406
-
Locally recurrent globally feedforward networks: A critical review of architectures
-
Tsoi, A. C., & Back, A. D. (1994). Locally recurrent globally feedforward networks: A critical review of architectures. IEEE Transactions on Neural Networks, 5, 229-239.
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, pp. 229-239
-
-
Tsoi, A.C.1
Back, A.D.2
-
26
-
-
0033080294
-
Complex-valued neural networks with adaptive spline activation function for digital radio links nonlinear equalization
-
Uncini, A., Vecci, L., Campolucci, P., & Piazza, F. (1999). Complex-valued neural networks with adaptive spline activation function for digital radio links nonlinear equalization. IEEE Transactions on Signal Processing, 47, 505-514.
-
(1999)
IEEE Transactions on Signal Processing
, vol.47
, pp. 505-514
-
-
Uncini, A.1
Vecci, L.2
Campolucci, P.3
Piazza, F.4
-
27
-
-
0001317823
-
Diagrammatic derivation of gradient algorithms for neural networks
-
Wan, E. A., & Beaufays, F. (1996). Diagrammatic derivation of gradient algorithms for neural networks. Neural Computation, 8, 182-201.
-
(1996)
Neural Computation
, vol.8
, pp. 182-201
-
-
Wan, E.A.1
Beaufays, F.2
-
28
-
-
0347994318
-
Diagrammatic methods for deriving and relating temporal neural networks algorithms
-
M. Gori & C. L. Giles (Eds.), Berlin: Springer-Verlag
-
Wan, E. A., & Beaufays, F. (1998). Diagrammatic methods for deriving and relating temporal neural networks algorithms. In M. Gori & C. L. Giles (Eds.), Adaptive processing of sequences and data structures. Berlin: Springer-Verlag.
-
(1998)
Adaptive Processing of Sequences and Data Structures
-
-
Wan, E.A.1
Beaufays, F.2
-
29
-
-
0025503558
-
Backpropagation through time: What it does and how to do it
-
Werbos, P. J. (1990). Backpropagation through time: What it does and how to do it. Proc. of IEEE, 78, 1550-1560.
-
(1990)
Proc. of IEEE
, vol.78
, pp. 1550-1560
-
-
Werbos, P.J.1
-
30
-
-
0001609567
-
An efficient gradient-based algorithm for on line training of recurrent network trajectories
-
Williams, R. J., & Peng, J. (1990). An efficient gradient-based algorithm for on line training of recurrent network trajectories. Neural Computation, 2, 490-501.
-
(1990)
Neural Computation
, vol.2
, pp. 490-501
-
-
Williams, R.J.1
Peng, J.2
-
31
-
-
0001202594
-
A learning algorithm for continually running fully recurrent neural networks
-
Williams, R. J., & Zipser, D. (1989). A learning algorithm for continually running fully recurrent neural networks. Neural Computation, 1, 270-280.
-
(1989)
Neural Computation
, vol.1
, pp. 270-280
-
-
Williams, R.J.1
Zipser, D.2
-
32
-
-
0001765578
-
Gradient-based learning algorithms for recurrent networks and their computational complexity
-
Y. Chauvin & D. E. Rumelhart (Eds.), Hillsdale, NJ: Erlbaum
-
Williams, R. J., & Zipser, D. (1994). Gradient-based learning algorithms for recurrent networks and their computational complexity. In Y. Chauvin & D. E. Rumelhart (Eds.), Backpropagation: Theory, architectures and applications (pp. 433-486). Hillsdale, NJ: Erlbaum.
-
(1994)
Backpropagation: Theory, Architectures and Applications
, pp. 433-486
-
-
Williams, R.J.1
Zipser, D.2
|