메뉴 건너뛰기




Volumn 11, Issue 4, 2000, Pages 1031-1038

Visualization and self-organization of multidimensional data through equalized orthogonal mapping

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; COMPUTATIONAL COMPLEXITY; COMPUTATIONAL METHODS; MATRIX ALGEBRA; NEURAL NETWORKS; OPTIMIZATION; TWO DIMENSIONAL; VISUALIZATION;

EID: 0034229058     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/72.857784     Document Type: Article
Times cited : (17)

References (20)
  • 3
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • T. Kohonen, "Self-organized formation of topologically correct feature maps," Biol. Cybern., vol. 43, pp. 59-69, 1982.
    • (1982) Biol. Cybern. , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 5
    • 84910828260 scopus 로고
    • Application of the Karhunen-Loève expansion to feature selection and ordering
    • K. Fukunaga and W. L. G. Koontz, "Application of the Karhunen-Loève expansion to feature selection and ordering," IEEE Trans. Comput., vol. C-19, pp. 311-318, 1970.
    • (1970) IEEE Trans. Comput. , vol.C-19 , pp. 311-318
    • Fukunaga, K.1    Koontz, W.L.G.2
  • 6
    • 0020464111 scopus 로고
    • A simplified neuron model as a principal component analyzer
    • E. Oja, "A simplified neuron model as a principal component analyzer," J. Math. Biol., vol. 15, pp. 267-273, 1982.
    • (1982) J. Math. Biol. , vol.15 , pp. 267-273
    • Oja, E.1
  • 7
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single-layer feedforward neural network
    • T. D. Sanger, "Optimal unsupervised learning in a single-layer feedforward neural network," Neural Networks, vol. 2, pp. 459-465, 1989.
    • (1989) Neural Networks , vol.2 , pp. 459-465
    • Sanger, T.D.1
  • 8
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative feedforward neural networks
    • M. A. Kramer, "Nonlinear principal component analysis using autoassociative feedforward neural networks," AIChE J., vol. 37, no. 2, pp. 233-243, 1991.
    • (1991) AIChE J. , vol.37 , Issue.2 , pp. 233-243
    • Kramer, M.A.1
  • 9
    • 0003339799 scopus 로고    scopus 로고
    • Dimension reduction, feature extraction and interpretation of data with network computing
    • Y.-H. Pao, "Dimension reduction, feature extraction and interpretation of data with network computing," Int. J. Pattern Recognit. Artif. Intell., vol. 1, no. 5, pp. 521-535, 1996.
    • (1996) Int. J. Pattern Recognit. Artif. Intell. , vol.1 , Issue.5 , pp. 521-535
    • Pao, Y.-H.1
  • 10
    • 84887006810 scopus 로고
    • A nonlinear mapping for data structure analysis
    • J. W. Sammon Jr, "A nonlinear mapping for data structure analysis," IEEE Trans. Comput., vol. C-18, pp. 401-409, 1969.
    • (1969) IEEE Trans. Comput. , vol.C-18 , pp. 401-409
    • Sammon Jr., J.W.1
  • 11
    • 0029270805 scopus 로고
    • Artificial neural networks for feature extraction and multivariate data projection
    • J. Mao and A. K. Jain, "Artificial neural networks for feature extraction and multivariate data projection," IEEE Trans. Neural Networks, vol. 6, pp. 296-317, 1995.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 296-317
    • Mao, J.1    Jain, A.K.2
  • 12
    • 0031244985 scopus 로고    scopus 로고
    • Visualization of pattern data through learning of nonlinear variance-conserving dimension-reduction mapping
    • Y.-H. Pao and C.-Y. Shen, "Visualization of pattern data through learning of nonlinear variance-conserving dimension-reduction mapping," Pattern Recognit., vol. 30, no. 10, pp. 1705-1718, 1997.
    • (1997) Pattern Recognit. , vol.30 , Issue.10 , pp. 1705-1718
    • Pao, Y.-H.1    Shen, C.-Y.2
  • 13
    • 0347963789 scopus 로고    scopus 로고
    • GTM: The generative topographic mapping
    • C. M. Bishop, M. Svensén, and C. K. I. Williams, "GTM: The generative topographic mapping," Neural Comput., vol. 10, no. 1, pp. 215-234, 1998.
    • (1998) Neural Comput. , vol.10 , Issue.1 , pp. 215-234
    • Bishop, C.M.1    Svensén, M.2    Williams, C.K.I.3
  • 15
    • 0032182763 scopus 로고    scopus 로고
    • Visualization and the understanding of multidimensional data
    • Y.-H. Pao and Z. Meng, "Visualization and the understanding of multidimensional data," Eng. Applicat. Artif. Intell., vol. 11, pp. 659-667, 1998.
    • (1998) Eng. Applicat. Artif. Intell. , vol.11 , pp. 659-667
    • Pao, Y.-H.1    Meng, Z.2
  • 16
    • 33749938847 scopus 로고    scopus 로고
    • Optimization with dimension reduction through learning of nonlinear variance-constrained mapping
    • Dayton, OH, Aug. 8-9
    • Z. Meng, Y.-H. Pao, and C.-Y. Shen, "Optimization with dimension reduction through learning of nonlinear variance-constrained mapping," in Proc. Adaptive Distributive Parallel Comput. Symp., Dayton, OH, Aug. 8-9, 1996, pp. 208-217.
    • (1996) Proc. Adaptive Distributive Parallel Comput. Symp. , pp. 208-217
    • Meng, Z.1    Pao, Y.-H.2    Shen, C.-Y.3
  • 17
    • 0023450871 scopus 로고
    • Bayesian control in mixture models
    • L. M. Berliner, "Bayesian control in mixture models," Technometrics, vol. 29, no. 4, pp. 455-460, 1987.
    • (1987) Technometrics , vol.29 , Issue.4 , pp. 455-460
    • Berliner, L.M.1
  • 18
    • 33749962626 scopus 로고    scopus 로고
    • Analysis and visualization of category membership distribution in multivariate data
    • Honolulu, HI, July 11-15
    • Y.-H. Pao, B. Duan, Y. Zhao, and S. R. LeClair, "Analysis and visualization of category membership distribution in multivariate data," in IPMM'99, Honolulu, HI, July 11-15, 1999.
    • (1999) IPMM'99
    • Pao, Y.-H.1    Duan, B.2    Zhao, Y.3    Leclair, S.R.4
  • 19
    • 0042837110 scopus 로고    scopus 로고
    • How can I know what You think?: Assessing representational similarity in neural systems
    • Madison, WI
    • A. Laakso and G. W. Cottrell, "How can I know what You think?: Assessing representational similarity in neural systems," in Proc. 20th Annu. Cognitive Sci. Conf., Madison, WI, 1998.
    • (1998) Proc. 20th Annu. Cognitive Sci. Conf.
    • Laakso, A.1    Cottrell, G.W.2
  • 20
    • 0028420218 scopus 로고
    • Learning and generalization characteristics of the random vector functional-link net
    • Y.-H. Pao, G.-H. Park, and D. J. Sobajic, "Learning and generalization characteristics of the random vector functional-link net," Neurocomputing, vol. 6, pp. 163-180, 1994.
    • (1994) Neurocomputing , vol.6 , pp. 163-180
    • Pao, Y.-H.1    Park, G.-H.2    Sobajic, D.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.