-
1
-
-
85024586927
-
Vibration frequencies of truncated cone and wedge beams
-
H.D. Conway J.F. Dubil Vibration frequencies of truncated cone and wedge beams ASME J. Appl. Mech. 32 1965 923 935
-
(1965)
ASME J. Appl. Mech.
, vol.32
, pp. 923-935
-
-
Conway, H.D.1
Dubil, J.F.2
-
2
-
-
0017301508
-
Transverse vibrations of tapered beams
-
R.P. Goel Transverse vibrations of tapered beams J. Sound Vibr. 47 1976 1 7
-
(1976)
J. Sound Vibr.
, vol.47
, pp. 1-7
-
-
Goel, R.P.1
-
3
-
-
0025702938
-
The natural frequencies of a non-uniform beam with a tip mass and with translational and rotational springs
-
K.Y. Yang The natural frequencies of a non-uniform beam with a tip mass and with translational and rotational springs J. Sound Vibr. 137 1990 339 341
-
(1990)
J. Sound Vibr.
, vol.137
, pp. 339-341
-
-
Yang, K.Y.1
-
4
-
-
0000703618
-
Transverse vibration of a class of non-uniform beams
-
D.J. Sanger Transverse vibration of a class of non-uniform beams Int. J. Mech. Engrg. Sci. 16 1968 111 120
-
(1968)
Int. J. Mech. Engrg. Sci.
, vol.16
, pp. 111-120
-
-
Sanger, D.J.1
-
5
-
-
85024573888
-
Generalized hypergeometric function solutions on the transverse vibration of a class of non-uniform beams
-
H.-C. Wang Generalized hypergeometric function solutions on the transverse vibration of a class of non-uniform beams ASME J. Appl. Mech. 34 1967 702 708
-
(1967)
ASME J. Appl. Mech.
, vol.34
, pp. 702-708
-
-
Wang, H.-C.1
-
6
-
-
0021389813
-
Vibration frequencies of tapered bars with end mass
-
J.H. Lau Vibration frequencies of tapered bars with end mass ASME J. Appl. Mech. 51 1984 179 181
-
(1984)
ASME J. Appl. Mech.
, vol.51
, pp. 179-181
-
-
Lau, J.H.1
-
7
-
-
0028765194
-
A direct solution of Euler–Bernoulli wedge and cone beams
-
S. Naguleswaran A direct solution of Euler–Bernoulli wedge and cone beams J. Sound Vibr. 172 1994 289 304
-
(1994)
J. Sound Vibr.
, vol.172
, pp. 289-304
-
-
Naguleswaran, S.1
-
8
-
-
0028765154
-
Vibration in the two principal planes of a non-uniform beam of rectangular cross-section, one side of which varies as the square root of the axial co-ordinate
-
S. Naguleswaran Vibration in the two principal planes of a non-uniform beam of rectangular cross-section, one side of which varies as the square root of the axial co-ordinate J. Sound Vibr. 172 1994 305 319
-
(1994)
J. Sound Vibr.
, vol.172
, pp. 305-319
-
-
Naguleswaran, S.1
-
9
-
-
0016338483
-
Transverse vibrations of non-uniform beam
-
L. Klein Transverse vibrations of non-uniform beam J. Sound Vibr. 37 1974 491 505
-
(1974)
J. Sound Vibr.
, vol.37
, pp. 491-505
-
-
Klein, L.1
-
10
-
-
0018784532
-
Higher order tapered beam finite elements for vibration analysis
-
C.W.S. To Higher order tapered beam finite elements for vibration analysis J. Sound Vibr. 63 1979 33 50
-
(1979)
J. Sound Vibr.
, vol.63
, pp. 33-50
-
-
To, C.W.S.1
-
11
-
-
0022414669
-
Exact Bernoulli–Euler dynamic stiffness matrix for a range of tapered beams
-
J.R. Banerjee F.W. Williams Exact Bernoulli–Euler dynamic stiffness matrix for a range of tapered beams Int. J. Num. Methods Engrg. 21 1985 2289 2302
-
(1985)
Int. J. Num. Methods Engrg.
, vol.21
, pp. 2289-2302
-
-
Banerjee, J.R.1
Williams, F.W.2
-
12
-
-
0003093345
-
Analysis of non-uniform beam vibration
-
S.Y. Lee H.Y. Ke Y.H. Kuo Analysis of non-uniform beam vibration J. Sound Vibr. 142 1990 15 29
-
(1990)
J. Sound Vibr.
, vol.142
, pp. 15-29
-
-
Lee, S.Y.1
Ke, H.Y.2
Kuo, Y.H.3
-
13
-
-
0001345738
-
Exact solution for the analysis of general elastically restrained non-uniform beams
-
S.Y. Lee Y.H. Kuo Exact solution for the analysis of general elastically restrained non-uniform beams ASME J. Appl. Mech. 59 1992 S205 S212
-
(1992)
ASME J. Appl. Mech.
, vol.59
, pp. S205-S212
-
-
Lee, S.Y.1
Kuo, Y.H.2
-
14
-
-
0018923412
-
Transverse vibrations of linearly tapered beams with ends restrained elastically against rotation subjected to axial force
-
K. Sato Transverse vibrations of linearly tapered beams with ends restrained elastically against rotation subjected to axial force Int. J. Mech. Sci. 22 1980 109 115
-
(1980)
Int. J. Mech. Sci.
, vol.22
, pp. 109-115
-
-
Sato, K.1
-
15
-
-
0024281501
-
On the analysis of laterally vibrating slender beams subject to various complicating effects
-
C.S. Kim S.M. Dickinson On the analysis of laterally vibrating slender beams subject to various complicating effects J. Sound Vibr. 122 1988 441 455
-
(1988)
J. Sound Vibr.
, vol.122
, pp. 441-455
-
-
Kim, C.S.1
Dickinson, S.M.2
-
16
-
-
0026154624
-
A note on vibrating tapered beams
-
R.O. Grossi R.B. Bhat A note on vibrating tapered beams J. Sound Vibr. 147 1991 174 178
-
(1991)
J. Sound Vibr.
, vol.147
, pp. 174-178
-
-
Grossi, R.O.1
Bhat, R.B.2
-
17
-
-
0024281282
-
Numerical experiments on free and forced vibrations of beams of uniform cross-section
-
P.A.A. Laura B. Valerga de Greco J.C. Utjes R. Carnicer Numerical experiments on free and forced vibrations of beams of uniform cross-section J. Sound Vibr. 120 1988 587 596
-
(1988)
J. Sound Vibr.
, vol.120
, pp. 587-596
-
-
Laura, P.A.A.1
Valerga de Greco, B.2
Utjes, J.C.3
Carnicer, R.4
-
18
-
-
0022421014
-
Flexural vibration of axially loaded beams with linear or parabolic taper
-
F.W. Williams J.R. Banerjee Flexural vibration of axially loaded beams with linear or parabolic taper J. Sound Vibr. 99 1985 121 138
-
(1985)
J. Sound Vibr.
, vol.99
, pp. 121-138
-
-
Williams, F.W.1
Banerjee, J.R.2
-
19
-
-
0022421528
-
Further flexural vibration curves for axially loaded beams with linear or parabolic taper
-
J.R. Banerjee F.W. Williams Further flexural vibration curves for axially loaded beams with linear or parabolic taper J. Sound Vibr. 102 1985 315 327
-
(1985)
J. Sound Vibr.
, vol.102
, pp. 315-327
-
-
Banerjee, J.R.1
Williams, F.W.2
-
20
-
-
0018263595
-
Reference frequencies for the validation of numerical solutions of transverse vibration of non-uniform beams
-
B. Downs Reference frequencies for the validation of numerical solutions of transverse vibration of non-uniform beams J. Sound Vibr. 61 1978 71 78
-
(1978)
J. Sound Vibr.
, vol.61
, pp. 71-78
-
-
Downs, B.1
|