메뉴 건너뛰기




Volumn 85, Issue 1, 2000, Pages 70-73

Time dependent theory for random lasers

Author keywords

[No Author keywords available]

Indexed keywords

DIELECTRIC MATERIALS; ELECTRIC FIELDS; ELECTROMAGNETIC WAVE PROPAGATION; ELECTRONS; FINITE DIFFERENCE METHOD; FOURIER TRANSFORMS; LASER MODES; MATHEMATICAL MODELS; MAXWELL EQUATIONS; OPTICAL PUMPING; PERMITTIVITY; TIME DOMAIN ANALYSIS;

EID: 0034225724     PISSN: 00319007     EISSN: None     Source Type: Journal    
DOI: 10.1103/PhysRevLett.85.70     Document Type: Article
Times cited : (358)

References (19)
  • 6
    • 4243485552 scopus 로고    scopus 로고
    • D. S. Wiersma, M. P. van Albada, and Ad Lagendijk, Phys. Rev. Lett. 75, 1739 (1995); D.S. Wiersma et al., Phys. Rev. E 54, 4256 (1996).
    • (1996) Phys. Rev. E , vol.54 , pp. 4256
    • Wiersma, D.S.1
  • 8
    • 17544374850 scopus 로고    scopus 로고
    • and references therein
    • S. John and G. Pang, Phys. Rev. A 54, 3642 (1996), and references therein.
    • (1996) Phys. Rev. A , vol.54 , pp. 3642
    • John, S.1    Pang, G.2
  • 15
    • 0004280229 scopus 로고
    • North-Holland Publishing Company, Amsterdam, See Chaps. 3, 8, and 9
    • A. Maitland and M. H. Dunn, Laser Physics (North-Holland Publishing Company, Amsterdam, 1969). See Chaps. 3, 8, and 9.
    • (1969) Laser Physics
    • Maitland, A.1    Dunn, M.H.2
  • 16
    • 0003434416 scopus 로고
    • Mill Valley, California, See Chaps. 2, 3, 6, and 13
    • Anthony E. Siegman, Lasers (Mill Valley, California, 1986). See Chaps. 2, 3, 6, and 13.
    • (1986) Lasers
    • Siegman, A.E.1
  • 18
    • 0343453260 scopus 로고    scopus 로고
    • note
    • Such as the coumarine 102 or uranin with meth as solvent. Our results are of general validity and are not sensitive to the lasing dyes used.
  • 19
    • 0342583354 scopus 로고    scopus 로고
    • note
    • The structure of our ID random medium is an alternate of layers of random thickness representing the gain medium and dielectric layers of constant thickness representing the scatterers. Theoretically, every discrete grid point of the layers representing the gain medium, is a source that can generate spontaneous emission. Because this is very time consuming, we selected to use a finite number (20 to 50) of sources. To simulate real spontaneous emission, every source needs a proper vibration amplitude and a Lorentzian frequency distribution. We have checked that the spatial distribution of the sources does not influence the calculation results.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.