-
1
-
-
0002117528
-
The boltzmann equation as a link between microscopic and macroscopic descriptions of fluid motions
-
London: Pitman
-
Nonlinear stability of entropy flux splitting schemes on bounded domains PETER QUELL Fachbereich 9 Mathematik, Universität des Saarlandes, Im Stadtwald, D 66041 Saarbrücken, Germany In this paper we show how the existence of an entropy for a system of multidimensional conservation laws naturally leads to a nonlinear stability analysis of finite volume schemes. The classical implication of the Lax theorem that consistency plus stability leads to convergence can be shown in the neighbourhood of smooth solutions. As an example we consider the Lax-Friedrichs scheme applied to the Euler equations of fluid dynamics. Keywords: finite volume methods; nonlinear stability; entropy.
-
(1998)
Lecture Notes, 5th International Winter School in the Mathematical Theory in Fluid Mechanics, Paseky 97 (Pitman Research Notes in Mathematics Series 392)
-
-
Bardos, C.1
-
2
-
-
0002715415
-
Coupling Boltzmann and Euler equations without overlapping
-
Providence, RI: American Mathematical Society
-
BARDOS, C. 1998 The Boltzmann equation as a link between microscopic and macroscopic descriptions of fluid motions. Lecture Notes, 5th International Winter School in the Mathematical Theory in Fluid Mechanics, Paseky 97 (Pitman Research Notes in Mathematics Series 392). London: Pitman.
-
(1994)
Domain Decomposition Methods in Science and Engineering (Como, 1992).
, pp. 377-398
-
-
Bourgat, J.-F.1
Le Tallec, P.2
Perthame, B.3
Qiu, Y.4
-
3
-
-
84990717899
-
Entropy flux splittings for hyperbolic conservation laws, part I: General framework
-
BOURGAT, J.-F., LE TALLEC, P., PERTHAME, B., & QIU, Y. 1994 Coupling Boltzmann and Euler equations without overlapping. Domain Decomposition Methods in Science and Engineering (Como, 1992). Providence, RI: American Mathematical Society, pp 377-398.
-
(1995)
Commun. Pure Appl. Math.
, vol.48
, pp. 691-729
-
-
Chen, G.Q.1
Le Floch, P.2
-
4
-
-
0002447593
-
Boundary conditions for nonlinear hyperbolic systems of conservation laws
-
CHEN, G. Q. & LE FLOCH, P. 1995 Entropy flux splittings for hyperbolic conservation laws, part I: general framework. Commun. Pure Appl. Math. 48, 691-729.
-
(1988)
J. Diff. Eq.
, vol.71
, pp. 93-122
-
-
Dubois, F.1
Le Floch, P.2
-
5
-
-
0002447593
-
Invariant regions under a Lax-Friedrichs scheme for multidimensional systems of conservation laws
-
DUBOIS, F. & LE FLOCH, P. 1988 Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Diff. Eq. 71, 93-122.
-
(1995)
Discrete Contin. Dynam. Systems
, vol.1
, Issue.4
, pp. 585-593
-
-
Frid, H.1
-
7
-
-
84968486120
-
Stability theory of difference approximations for mixed initial boundary value problems II
-
GODLEWSKI, E. & RAVIART, P. A. 1996 Numerical Approximation of Hyperbolic Systems of Conservation Laws. New York: Springer.
-
(1972)
Math. Comput.
, vol.26
, Issue.119
, pp. 649-686
-
-
Gustafsson, B.1
Kreiss, H.O.2
Sundström, A.3
-
8
-
-
0002229737
-
On the symmetric form of systems of conservation laws with entropy
-
GUSTAFSSON, B., KREISS, H. O., & SUNDSTRÖM, A. 1972 Stability theory of difference approximations for mixed initial boundary value problems II. Math. Comput. 26, No 119, 649-686.
-
(1983)
J. Comput. Phys.
, vol.49
, pp. 151-164
-
-
Harten, A.1
-
9
-
-
0002229737
-
On upstream differencing and Godunov-type schemes for hyperbolic conservation laws
-
HARTEN, A. 1983 On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 49, 151-164.
-
(1983)
SIAM Rev.
, vol.25
, pp. 35-61
-
-
Harten, A.1
Lax, P.D.2
Van Leer, B.3
-
10
-
-
84966247178
-
Approximation methods for nonlinear problems with application to two-point boundary value problems
-
HARTEN, A., LAX, P. D., & VAN LEER, B. 1983 On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25, 35-61.
-
(1975)
Math. Comput.
, vol.29
, pp. 464-474
-
-
Keller, H.B.1
-
13
-
-
0002262211
-
Stability and convergence in numerical analysis III: Linear investigation of nonlinear stability
-
LOPEZ-MARCOS, J. C. & SANZ-SERNA, J. M. 1988a Definition of stability for nonlinear problems. Numerical Treatment of Differential Equations (K. Strehmel, ed). Stuttgart: Teubner.
-
(1988)
IMA J. Numer. Anal.
, vol.8
, pp. 71-84
-
-
Lopez-Marcos, J.C.1
Sanz-Serna, J.M.2
-
15
-
-
0030530384
-
On positivity preserving finite volume schemes for Euler equations
-
MAJDA, A. 1984 Compressible Fluid Flow and Systems of Conservation Laws in Several Space Dimensions (Appl. Math. Science 53). New York: Springer.
-
(1996)
Numerische Mathematik
, vol.73
, pp. 119-130
-
-
Perthame, B.1
Shu, C.W.2
-
17
-
-
2942757053
-
Approximate Riemann solvers, parameter vectors and difference schemes
-
QUELL, P. 1999 Stabilitätsuntersuchungen bei der numerischen Kopplung von Boltzmanngleichung und Eulergleichungen. PhD Thesis, University of Saarland, Saarbrücken, Germany.
-
(1981)
J. Comput. Phys.
, vol.43
, pp. 357-372
-
-
Roe, P.1
-
20
-
-
0001185178
-
Group velocity interpretation of the stability theory of Gustafsson, Kreiss and Sundström
-
STETTER, H. J. 1973 Analysis of Discretization Methods for Ordinary Differential Equations. Berlin: Springer.
-
(1983)
J. Comput. Phys.
, vol.49
, pp. 199-217
-
-
Trefethen, L.N.1
-
21
-
-
84990553414
-
Instability of difference models for hyperbolic initial boundary value problems
-
TREFETHEN, L. N. 1983 Group velocity interpretation of the stability theory of Gustafsson, Kreiss and Sundström. J. Comput. Phys. 49, 199-217.
-
(1984)
Commun. Pure Appl. Math.
, vol.37
, pp. 329-367
-
-
Trefethen, L.N.1
|