-
1
-
-
0000375212
-
-
P. Caputo, M. V. Fistul, A. V. Ustinov, B. A. Malomed, and S. Flach, Phys. Rev. B 59, 14 050 (1999).
-
(1999)
Phys. Rev. B
, vol.59
, pp. 14-050
-
-
Caputo, P.1
Fistul, M.V.2
Ustinov, A.V.3
Malomed, B.A.4
Flach, S.5
-
6
-
-
0030495806
-
-
L. M. Floría, J. L. Marín, P. J. Martínez, F. Falo, and S. Aubry, Europhys. Lett. 36, 539 (1996).
-
(1996)
Europhys. Lett.
, vol.36
, pp. 539
-
-
Floría, L.M.1
Marín, J.L.2
Martínez, P.J.3
Falo, F.4
Aubry, S.5
-
10
-
-
0002923146
-
-
J. Kim, W. G. Chee, S. Kim, and H. J. Lee, Phys. Rev. B 49, 459 (1994).
-
(1994)
Phys. Rev. B
, vol.49
, pp. 459
-
-
Kim, J.1
Chee, W.G.2
Kim, S.3
Lee, H.J.4
-
13
-
-
3943102537
-
-
H. S. J. van der Zant, T. P. Orlando, S. Watanabe, and S. H. Strogatz, Phys. Rev. Lett. 74, 174 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 174
-
-
van der Zant, H.S.J.1
Orlando, T.P.2
Watanabe, S.3
Strogatz, S.H.4
-
14
-
-
0000172540
-
-
S. Watanabe, S. H. Strogatz, H. S. J. van der Zant, and T. P. Orlando, Phys. Rev. Lett. 74, 379 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 379
-
-
Watanabe, S.1
Strogatz, S.H.2
van der Zant, H.S.J.3
Orlando, T.P.4
-
15
-
-
25544453203
-
-
A. V. Ustinov, M. Cirillo, B. H. Larsen, V. A. Oboznov, P. Carellí, and G. Rotolí, Phys. Rev. B 51, 3081 (1995).
-
(1995)
Phys. Rev. B
, vol.51
, pp. 3081
-
-
Ustinov, A.V.1
Cirillo, M.2
Larsen, B.H.3
Oboznov, V.A.4
Carellí, P.5
Rotolí, G.6
-
16
-
-
0032136459
-
-
P. J. Martínez, L. M. Floría, J. L. Marín, S. Aubry, and J. J. Mazo, Physica D 119, 175 (1998).
-
(1998)
Physica D
, vol.119
, pp. 175
-
-
Martínez, P.J.1
Floría, L.M.2
Marín, J.L.3
Aubry, S.4
Mazo, J.J.5
-
17
-
-
22244473994
-
-
L. M. Florí, J. L. Marín, S. Aubry, P. J. Martínez, F. Falo, and J. J. Mazo, Physica D 113, 387 (1998).
-
(1998)
Physica D
, vol.113
, pp. 387
-
-
Florí, L.M.1
Marín, J.L.2
Aubry, S.3
Martínez, P.J.4
Falo, F.5
Mazo, J.J.6
-
19
-
-
0000477827
-
-
J. F. Currie, S. E. Trullinger, A. R. Bishop, and J. A. Krumhansl, Phys. Rev. B 15, 5567 (1977).
-
(1977)
Phys. Rev. B
, vol.15
, pp. 5567
-
-
Currie, J.F.1
Trullinger, S.E.2
Bishop, A.R.3
Krumhansl, J.A.4
-
20
-
-
0030263090
-
-
S. Watanabe, H. S. J. van der Zant, S. H. Strogatz, and T. P. Orlando, Physica D 97, 429 (1996).
-
(1996)
Physica D
, vol.97
, pp. 429
-
-
Watanabe, S.1
van der Zant, H.S.J.2
Strogatz, S.H.3
Orlando, T.P.4
-
21
-
-
0032141661
-
-
H. S. J. van der Zant, M. Barahona, A. E. Duwel, E. Trías, T. P. Orlando, S. Watanabe, and S. H. Strogatz, Physica D 119, 219 (1998).
-
(1998)
Physica D
, vol.119
, pp. 219
-
-
van der Zant, H.S.J.1
Barahona, M.2
Duwel, A.E.3
Trías, E.4
Orlando, T.P.5
Watanabe, S.6
Strogatz, S.H.7
-
24
-
-
0007150540
-
-
and references therein
-
Z. Zheng, B. Hu, and G. Hu, Phys. Rev. E 57, 1139 (1998), and references therein.
-
(1998)
Phys. Rev. E
, vol.57
, pp. 1139
-
-
Zheng, Z.1
Hu, B.2
Hu, G.3
-
26
-
-
85036363976
-
-
This is for the classical limit, where the charging energy of the junction is much less than the Josephson tunneling energy
-
This is for the classical limit, where the charging energy of the junction is much less than the Josephson tunneling energy.
-
-
-
-
29
-
-
85036375710
-
-
If any exponents are positive, then phase locking in the ladder, for the given values of bias current, capacitance, and critical current anisotropy, is not stable because perturbations grow with time. We do not find any evidence for such an instability for the values of these parameters that we have used
-
If any exponents are positive, then phase locking in the ladder, for the given values of bias current, capacitance, and critical current anisotropy, is not stable because perturbations grow with time. We do not find any evidence for such an instability for the values of these parameters that we have used.
-
-
-
-
30
-
-
85036178223
-
-
See, for example, J. B. Marion and S. T. Thornton, Classical Dynamics of Particles and Systems (Saunders, Fort Worth, 1995), pp. 116–123
-
See, for example, J. B. Marion and S. T. Thornton, Classical Dynamics of Particles and Systems (Saunders, Fort Worth, 1995), pp. 116–123.
-
-
-
-
32
-
-
85036251036
-
-
These arrays are similar to that of Fig. 11, except that there are no vertical junctions, just superconducting shorts connecting the horizontal junctions
-
These arrays are similar to that of Fig. 11, except that there are no vertical junctions, just superconducting shorts connecting the horizontal junctions.
-
-
-
-
33
-
-
85036424084
-
-
These “phonons” can be thought of as small-angle oscilla-tions, or normal modes, of the pendulum system. They have also been described as phasons or spin-wave-like modes of the junction arrays
-
These “phonons” can be thought of as small-angle oscilla-tions, or normal modes, of the pendulum system. They have also been described as phasons or spin-wave-like modes of the junction arrays.
-
-
-
-
34
-
-
85036378722
-
-
See Ref. 4 for the derivation of the DSG equation from the RCSJ model
-
See Ref. 4 for the derivation of the DSG equation from the RCSJ model.
-
-
-
-
35
-
-
85036283883
-
-
As will be seen in Sec. IV, the long-wavelength normal modes seem to play an important role in determining the Floquet exponent for the longest-lived mode of the ladder
-
As will be seen in Sec. IV, the long-wavelength normal modes seem to play an important role in determining the Floquet exponent for the longest-lived mode of the ladder.
-
-
-
|