메뉴 건너뛰기




Volumn 32, Issue 2, 2000, Pages 315-330

Hierarchical probability models and bayesian analysis of mine locations

Author keywords

Cox point process; Markov chain Monte Carlo; Poisson point process; Posterior distribution; Prior distribution

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; EXPLOSIVES; MARKOV PROCESSES; MATHEMATICAL MODELS; MILITARY APPLICATIONS; MONTE CARLO METHODS; REMOTE SENSING;

EID: 0034205298     PISSN: 00018678     EISSN: None     Source Type: Journal    
DOI: 10.1239/aap/1013540165     Document Type: Article
Times cited : (19)

References (18)
  • 2
    • 0032375671 scopus 로고    scopus 로고
    • Nearest neighbor clutter removal for estimating features in spatial point processes
    • Byers, S. AND Raftery, A. (1998). Nearest neighbor clutter removal for estimating features in spatial point processes. J. Amer. Statist. Assoc. 93, 577-584.
    • (1998) J. Amer. Statist. Assoc. , vol.93 , pp. 577-584
    • Byers, S.1    Raftery, A.2
  • 3
    • 0030539336 scopus 로고    scopus 로고
    • Markov chain Monte Carlo convergence diagnostics: A comparative review
    • COWLES, M. K. and Carlin, B. P. (1996). Markov chain Monte Carlo convergence diagnostics: a comparative review. J. Amer. Statist. Assoc. 91, 883-904.
    • (1996) J. Amer. Statist. Assoc. 91 , pp. 883-904
    • Cowles, M.K.1    Carlin, B.P.2
  • 6
    • 4243616856 scopus 로고
    • A conditional approach to point process modelling of elevated risk
    • DIGGLE, P. AND Rowlingson, B. (1994). A conditional approach to point process modelling of elevated risk. J. Roy. Statist. Soc. A 157, 433-440.
    • (1994) J. Roy. Statist. Soc.A , vol.157 , pp. 433-440
    • Diggle, P.1    Rowlingson, B.2
  • 7
    • 0001309227 scopus 로고
    • Simulation procedures and likelihood inference for spatial point processes
    • Geyer, C. AND MØLLER, J. (1994). Simulation procedures and likelihood inference for spatial point processes. Scand. J. Statist. 21, 84-88.
    • (1994) Scand. J. Statist. , vol.21 , pp. 84-88
    • Geyer, C.1    Møller, J.2
  • 8
    • 77956889087 scopus 로고
    • Reversiblejump MCMC computation and Bayesian model determination
    • Green, P. J. (1995). Reversiblejump MCMC computation and Bayesian model determination. Biometrika 82, 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 12
    • 0004521590 scopus 로고    scopus 로고
    • Some spatial statistical tools for pattern recognition
    • A. Stein, F. W. T. P. de Vries and J. Schut. C. T. de Wit Graduate School for Production Ecology
    • Lawson, A. B. (1997). Some spatial statistical tools for pattern recognition. In Quantitative Approaches in Systems Analysis, Vol. 7, eds A. Stein, F. W. T. P. de Vries and J. Schut. C. T. de Wit Graduate School for Production Ecology, pp. 43-58.
    • (1997) Quantitative Approaches in Systems Analysis , vol.7 , pp. 43-58
    • Lawson, A.B.1
  • 13
    • 0000972680 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods for putative sources of hazard and general clustering
    • A. B. Lawson, D. Bohning, E. Lesaffre, A. Biggeri, J.-F. Viel and R. Bertollini. John Wiley, New York
    • Lawson, A. B. and Clark, A. (1999). Markov chain Monte Carlo methods for putative sources of hazard and general clustering. In Disease Mapping and Risk Assessment for Public Health, eds A. B. Lawson, D. Bohning, E. Lesaffre, A. Biggeri, J.-F. Viel and R. Bertollini. John Wiley, New York, Chapter 9, pp. 119-141.
    • (1999) Disease Mapping and Risk Assessment for Public Health , vol.9 , pp. 119-141
    • Lawson, A.B.1    Clark, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.