메뉴 건너뛰기




Volumn 12, Issue 6, 2000, Pages 1313-1335

Attractor dynamics in feedforward neural networks

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; BAYES THEOREM; FEEDBACK SYSTEM; NONLINEAR SYSTEM; PROBABILITY;

EID: 0034203346     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976600300015385     Document Type: Article
Times cited : (15)

References (27)
  • 2
    • 0003888025 scopus 로고
    • Cambridge: Cambridge University Press
    • Amit, D. J. (1989). Modeling brain function. Cambridge: Cambridge University Press.
    • (1989) Modeling Brain Function
    • Amit, D.J.1
  • 3
    • 0031273462 scopus 로고    scopus 로고
    • Adaptive probabilistic networks with hidden variables
    • Binder, J., Koller, D., Russell, S. J., & Kanazawa, K. (1997). Adaptive probabilistic networks with hidden variables. Machine Learning, 29, 213-244.
    • (1997) Machine Learning , vol.29 , pp. 213-244
    • Binder, J.1    Koller, D.2    Russell, S.J.3    Kanazawa, K.4
  • 5
    • 0020970741 scopus 로고
    • Absolute stability of global pattern formation and parallel memory storage by competitive neural networks
    • Cohen, M. A., & Grossberg, S. (1983). Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Transactions on Systems, Man, and Cybernetics, 13, 815-826.
    • (1983) IEEE Transactions on Systems, Man, and Cybernetics , vol.13 , pp. 815-826
    • Cohen, M.A.1    Grossberg, S.2
  • 6
    • 0025401005 scopus 로고
    • Computational complexity of probabilistic inference using Bayesian belief networks
    • Cooper, G. (1990). Computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence, 42, 393-405.
    • (1990) Artificial Intelligence , vol.42 , pp. 393-405
    • Cooper, G.1
  • 8
    • 0041001763 scopus 로고
    • The limitations of deterministic Boltzmann machine learning
    • Galland, C. C. (1993). The limitations of deterministic Boltzmann machine learning. Network: Computations in Neural Systems, 4, 355-379.
    • (1993) Network: Computations in Neural Systems , vol.4 , pp. 355-379
    • Galland, C.C.1
  • 10
    • 0029652445 scopus 로고
    • The wake-sleep algorithm for unsupervised neural networks
    • Hinton, G. E., Dayan, P., Frey, B. J., & Neal, R. M. (1995). The wake-sleep algorithm for unsupervised neural networks. Science, 268, 1158-1161.
    • (1995) Science , vol.268 , pp. 1158-1161
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.M.4
  • 11
    • 0031590130 scopus 로고    scopus 로고
    • Generative models for discovering sparse distributed representations
    • Hinton, G. E., & Ghahramani, Z. (1997). Generative models for discovering sparse distributed representations. Philosophical Transactions Royal Society B, 352, 1177-1190.
    • (1997) Philosophical Transactions Royal Society B , vol.352 , pp. 1177-1190
    • Hinton, G.E.1    Ghahramani, Z.2
  • 12
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, USA, 79, 2554-2558.
    • (1982) Proceedings of the National Academy of Sciences, USA , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 13
    • 0004469897 scopus 로고
    • Neurons with graded responses have collective computational properties like those of two-state neurons
    • Hopfield, J. J. (1984). Neurons with graded responses have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Sciences, USA, 81, 3088-3092.
    • (1984) Proceedings of the National Academy of Sciences, USA , vol.81 , pp. 3088-3092
    • Hopfield, J.J.1
  • 14
    • 0022504321 scopus 로고
    • Computing with neural circuits: A model
    • Hopfield, J. J., & Tank, D. W. (1986). Computing with neural circuits: A model. Science, 233, 625-633.
    • (1986) Science , vol.233 , pp. 625-633
    • Hopfield, J.J.1    Tank, D.W.2
  • 15
    • 0026838119 scopus 로고
    • Iterative inversion of neural networks and its application to adaptive control
    • Hoskins, D., Hwang, J., & Vagners, J. (1992). Iterative inversion of neural networks and its application to adaptive control. IEEE Transactions on Neural Networks, 3, 292-301.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , pp. 292-301
    • Hoskins, D.1    Hwang, J.2    Vagners, J.3
  • 16
    • 44049116478 scopus 로고
    • Forward models: Supervised learning with a distal teacher
    • Jordan, M. I., & Rumelhart, D. E. (1992). Forward models: Supervised learning with a distal teacher. Cognitive Science, 16, 307-354.
    • (1992) Cognitive Science , vol.16 , pp. 307-354
    • Jordan, M.I.1    Rumelhart, D.E.2
  • 18
  • 19
    • 0001606799 scopus 로고    scopus 로고
    • Bayesian unsupervised learning of higher order structure
    • M. Mozer, M. Jordan, & T. Petsche (Eds.), Cambridge, MA: MIT Press
    • Lewicki, M. S., & Sejnowski, T. J. (1996). Bayesian unsupervised learning of higher order structure. In M. Mozer, M. Jordan, & T. Petsche (Eds.), Advances in neural information processing systems, 9. Cambridge, MA: MIT Press.
    • (1996) Advances in Neural Information Processing Systems , vol.9
    • Lewicki, M.S.1    Sejnowski, T.J.2
  • 21
    • 44049116681 scopus 로고
    • Connectionist learning of belief networks
    • Neal, R. M. (1992). Connectionist learning of belief networks. Artificial Intelligence, 56, 71-113.
    • (1992) Artificial Intelligence , vol.56 , pp. 71-113
    • Neal, R.M.1
  • 24
    • 0001406440 scopus 로고
    • A mean field theory learning algorithm for neural networks
    • Peterson, C., & Anderson, J. R. (1987). A mean field theory learning algorithm for neural networks. Complex Systems, 1, 995-1019.
    • (1987) Complex Systems , vol.1 , pp. 995-1019
    • Peterson, C.1    Anderson, J.R.2
  • 27
    • 84898928980 scopus 로고    scopus 로고
    • Minimax and Hamiltonian dynamics of excitatory-inhibitory networks
    • M. Jordan, M. Kearns, & S. Solla (Eds.), Cambridge, MA: MIT Press
    • Seung, H. S., Richardson, T. J., Lagarias, J. C., & Hopfield, J. J. (1998). Minimax and Hamiltonian dynamics of excitatory-inhibitory networks. In M. Jordan, M. Kearns, & S. Solla (Eds.), Advances in neural information processing systems, 10. Cambridge, MA: MIT Press.
    • (1998) Advances in Neural Information Processing Systems , vol.10
    • Seung, H.S.1    Richardson, T.J.2    Lagarias, J.C.3    Hopfield, J.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.