-
1
-
-
0001578518
-
A learning algorithm for Boltzmann machines
-
Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for Boltzmann machines. Cognitive Science, 9, 147-169.
-
(1985)
Cognitive Science
, vol.9
, pp. 147-169
-
-
Ackley, D.H.1
Hinton, G.E.2
Sejnowski, T.J.3
-
2
-
-
0003888025
-
-
Cambridge: Cambridge University Press
-
Amit, D. J. (1989). Modeling brain function. Cambridge: Cambridge University Press.
-
(1989)
Modeling Brain Function
-
-
Amit, D.J.1
-
3
-
-
0031273462
-
Adaptive probabilistic networks with hidden variables
-
Binder, J., Koller, D., Russell, S. J., & Kanazawa, K. (1997). Adaptive probabilistic networks with hidden variables. Machine Learning, 29, 213-244.
-
(1997)
Machine Learning
, vol.29
, pp. 213-244
-
-
Binder, J.1
Koller, D.2
Russell, S.J.3
Kanazawa, K.4
-
5
-
-
0020970741
-
Absolute stability of global pattern formation and parallel memory storage by competitive neural networks
-
Cohen, M. A., & Grossberg, S. (1983). Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Transactions on Systems, Man, and Cybernetics, 13, 815-826.
-
(1983)
IEEE Transactions on Systems, Man, and Cybernetics
, vol.13
, pp. 815-826
-
-
Cohen, M.A.1
Grossberg, S.2
-
6
-
-
0025401005
-
Computational complexity of probabilistic inference using Bayesian belief networks
-
Cooper, G. (1990). Computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence, 42, 393-405.
-
(1990)
Artificial Intelligence
, vol.42
, pp. 393-405
-
-
Cooper, G.1
-
7
-
-
0029372831
-
The Helmholtz machine
-
Dayan, P., Hinton, G. E., Neal, R. M., & Zemel, R. (1995). The Helmholtz machine. Neural Computation, 7, 889-904.
-
(1995)
Neural Computation
, vol.7
, pp. 889-904
-
-
Dayan, P.1
Hinton, G.E.2
Neal, R.M.3
Zemel, R.4
-
8
-
-
0041001763
-
The limitations of deterministic Boltzmann machine learning
-
Galland, C. C. (1993). The limitations of deterministic Boltzmann machine learning. Network: Computations in Neural Systems, 4, 355-379.
-
(1993)
Network: Computations in Neural Systems
, vol.4
, pp. 355-379
-
-
Galland, C.C.1
-
9
-
-
0021518209
-
Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
-
Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-741.
-
(1984)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
10
-
-
0029652445
-
The wake-sleep algorithm for unsupervised neural networks
-
Hinton, G. E., Dayan, P., Frey, B. J., & Neal, R. M. (1995). The wake-sleep algorithm for unsupervised neural networks. Science, 268, 1158-1161.
-
(1995)
Science
, vol.268
, pp. 1158-1161
-
-
Hinton, G.E.1
Dayan, P.2
Frey, B.J.3
Neal, R.M.4
-
11
-
-
0031590130
-
Generative models for discovering sparse distributed representations
-
Hinton, G. E., & Ghahramani, Z. (1997). Generative models for discovering sparse distributed representations. Philosophical Transactions Royal Society B, 352, 1177-1190.
-
(1997)
Philosophical Transactions Royal Society B
, vol.352
, pp. 1177-1190
-
-
Hinton, G.E.1
Ghahramani, Z.2
-
12
-
-
0020118274
-
Neural networks and physical systems with emergent collective computational abilities
-
Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, USA, 79, 2554-2558.
-
(1982)
Proceedings of the National Academy of Sciences, USA
, vol.79
, pp. 2554-2558
-
-
Hopfield, J.J.1
-
13
-
-
0004469897
-
Neurons with graded responses have collective computational properties like those of two-state neurons
-
Hopfield, J. J. (1984). Neurons with graded responses have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Sciences, USA, 81, 3088-3092.
-
(1984)
Proceedings of the National Academy of Sciences, USA
, vol.81
, pp. 3088-3092
-
-
Hopfield, J.J.1
-
14
-
-
0022504321
-
Computing with neural circuits: A model
-
Hopfield, J. J., & Tank, D. W. (1986). Computing with neural circuits: A model. Science, 233, 625-633.
-
(1986)
Science
, vol.233
, pp. 625-633
-
-
Hopfield, J.J.1
Tank, D.W.2
-
15
-
-
0026838119
-
Iterative inversion of neural networks and its application to adaptive control
-
Hoskins, D., Hwang, J., & Vagners, J. (1992). Iterative inversion of neural networks and its application to adaptive control. IEEE Transactions on Neural Networks, 3, 292-301.
-
(1992)
IEEE Transactions on Neural Networks
, vol.3
, pp. 292-301
-
-
Hoskins, D.1
Hwang, J.2
Vagners, J.3
-
16
-
-
44049116478
-
Forward models: Supervised learning with a distal teacher
-
Jordan, M. I., & Rumelhart, D. E. (1992). Forward models: Supervised learning with a distal teacher. Cognitive Science, 16, 307-354.
-
(1992)
Cognitive Science
, vol.16
, pp. 307-354
-
-
Jordan, M.I.1
Rumelhart, D.E.2
-
17
-
-
0038056040
-
Analog "neuronal" networks in early vision
-
Koch, C., Marroquin, J., & Yuille, A. (1986). Analog "neuronal" networks in early vision. Proceedings of the National Academy of Sciences, USA, 83, 4263-4267.
-
(1986)
Proceedings of the National Academy of Sciences, USA
, vol.83
, pp. 4263-4267
-
-
Koch, C.1
Marroquin, J.2
Yuille, A.3
-
19
-
-
0001606799
-
Bayesian unsupervised learning of higher order structure
-
M. Mozer, M. Jordan, & T. Petsche (Eds.), Cambridge, MA: MIT Press
-
Lewicki, M. S., & Sejnowski, T. J. (1996). Bayesian unsupervised learning of higher order structure. In M. Mozer, M. Jordan, & T. Petsche (Eds.), Advances in neural information processing systems, 9. Cambridge, MA: MIT Press.
-
(1996)
Advances in Neural Information Processing Systems
, vol.9
-
-
Lewicki, M.S.1
Sejnowski, T.J.2
-
20
-
-
5744249209
-
Equation of state calculations for fast computing machines
-
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations for fast computing machines. Journal of Chemical Physics, 21, 1087-1092.
-
(1953)
Journal of Chemical Physics
, vol.21
, pp. 1087-1092
-
-
Metropolis, N.1
Rosenbluth, A.W.2
Rosenbluth, M.N.3
Teller, A.H.4
Teller, E.5
-
21
-
-
44049116681
-
Connectionist learning of belief networks
-
Neal, R. M. (1992). Connectionist learning of belief networks. Artificial Intelligence, 56, 71-113.
-
(1992)
Artificial Intelligence
, vol.56
, pp. 71-113
-
-
Neal, R.M.1
-
24
-
-
0001406440
-
A mean field theory learning algorithm for neural networks
-
Peterson, C., & Anderson, J. R. (1987). A mean field theory learning algorithm for neural networks. Complex Systems, 1, 995-1019.
-
(1987)
Complex Systems
, vol.1
, pp. 995-1019
-
-
Peterson, C.1
Anderson, J.R.2
-
25
-
-
0029679189
-
Mean field theory for sigmoid belief networks
-
Saul, L. K., Jaakkola, T. S., & Jordan, M. I. (1996). Mean field theory for sigmoid belief networks. Journal of Artificial Intelligence Research, 4, 61-76.
-
(1996)
Journal of Artificial Intelligence Research
, vol.4
, pp. 61-76
-
-
Saul, L.K.1
Jaakkola, T.S.2
Jordan, M.I.3
-
27
-
-
84898928980
-
Minimax and Hamiltonian dynamics of excitatory-inhibitory networks
-
M. Jordan, M. Kearns, & S. Solla (Eds.), Cambridge, MA: MIT Press
-
Seung, H. S., Richardson, T. J., Lagarias, J. C., & Hopfield, J. J. (1998). Minimax and Hamiltonian dynamics of excitatory-inhibitory networks. In M. Jordan, M. Kearns, & S. Solla (Eds.), Advances in neural information processing systems, 10. Cambridge, MA: MIT Press.
-
(1998)
Advances in Neural Information Processing Systems
, vol.10
-
-
Seung, H.S.1
Richardson, T.J.2
Lagarias, J.C.3
Hopfield, J.J.4
|