메뉴 건너뛰기




Volumn 33, Issue 1, 2000, Pages 381-392

High order conservative difference methods for 2D drift-diffusion model on non-uniform grid

Author keywords

[No Author keywords available]

Indexed keywords

BOUNDARY CONDITIONS; CONFORMAL MAPPING; CURRENT DENSITY; MATHEMATICAL MODELS; NONLINEAR EQUATIONS; PARTIAL DIFFERENTIAL EQUATIONS; SEMICONDUCTOR DEVICES;

EID: 0034190249     PISSN: 01689274     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0168-9274(99)00105-1     Document Type: Article
Times cited : (10)

References (22)
  • 1
    • 0000665727 scopus 로고
    • Compact high-order schemes for the Euler equations
    • S. Abarbanel, A. Kumar, Compact high-order schemes for the Euler equations, J. Sci. Comput. 3 (3) (1988) 275-288.
    • (1988) J. Sci. Comput. , vol.3 , Issue.3 , pp. 275-288
    • Abarbanel, S.1    Kumar, A.2
  • 3
    • 0001565447 scopus 로고
    • Méthodes d'éléments finis mixtes et schéma de Scharfetter-Gummel
    • F. Brezzi, L. Marini, P. Pietra, Méthodes d'éléments finis mixtes et schéma de Scharfetter-Gummel, C. R. Acad. Sci. Paris 305 (1987) 599-604.
    • (1987) C. R. Acad. Sci. Paris , vol.305 , pp. 599-604
    • Brezzi, F.1    Marini, L.2    Pietra, P.3
  • 4
    • 0000617339 scopus 로고
    • 2D exponential fitting and applications to drift-diffusion models
    • F. Brezzi, L. Marini, P. Pietra, 2D exponential fitting and applications to drift-diffusion models, SIAM J. Numer. Anal. 26 (1989) 1342-1355.
    • (1989) SIAM J. Numer. Anal. , vol.26 , pp. 1342-1355
    • Brezzi, F.1    Marini, L.2    Pietra, P.3
  • 5
    • 0001439584 scopus 로고
    • The stability of numerical boundary treatments for compact high-order finite difference schemes
    • M.K. Carpenter, D. Gottlieb, S. Abarbanel, The stability of numerical boundary treatments for compact high-order finite difference schemes, J. Comput. Phys. 108 (1993) 272-295.
    • (1993) J. Comput. Phys. , vol.108 , pp. 272-295
    • Carpenter, M.K.1    Gottlieb, D.2    Abarbanel, S.3
  • 6
    • 0001473098 scopus 로고
    • Time-stable boundary condition for finite difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes
    • M.K. Carpenter, D. Gottlieb, S. Abarbanel, Time-stable boundary condition for finite difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes, J. Comput. Phys. 111 (1994) 220-236.
    • (1994) J. Comput. Phys. , vol.111 , pp. 220-236
    • Carpenter, M.K.1    Gottlieb, D.2    Abarbanel, S.3
  • 7
    • 0008466688 scopus 로고
    • The operator compact implicit method for parabolic equations
    • M. Ciment, S.H. Leventhal, B.C. Weinberg, The operator compact implicit method for parabolic equations, J. Comput. Phys. 28 (1978) 135-166.
    • (1978) J. Comput. Phys. , vol.28 , pp. 135-166
    • Ciment, M.1    Leventhal, S.H.2    Weinberg, B.C.3
  • 9
    • 0000468321 scopus 로고
    • 4 finite difference approximations to operators of Navier-Stokes type
    • 4 finite difference approximations to operators of Navier-Stokes type, J. Comput. Phys. 85 (1989) 390-416.
    • (1989) J. Comput. Phys. , vol.85 , pp. 390-416
    • Dennis, S.C.R.1    Hudson, J.D.2
  • 10
    • 0021207821 scopus 로고
    • A single cell high order scheme for the convection-diffusion equation with variable coefficients
    • M.M. Gupta, R.P. Manohar, J.W. Stephenson, A single cell high order scheme for the convection-diffusion equation with variable coefficients, Internat. J. Numer. Methods Fluids 4 (1984) 641-651.
    • (1984) Internat. J. Numer. Methods Fluids , vol.4 , pp. 641-651
    • Gupta, M.M.1    Manohar, R.P.2    Stephenson, J.W.3
  • 11
    • 0003102291 scopus 로고
    • High order accurate difference solution of fluid mechanics problems by a compact differencing technique
    • R.S. Hirsh, High order accurate difference solution of fluid mechanics problems by a compact differencing technique, J. Comput. Phys. 9 (1) (1975) 90-109.
    • (1975) J. Comput. Phys. , vol.9 , Issue.1 , pp. 90-109
    • Hirsh, R.S.1
  • 13
    • 9144220381 scopus 로고
    • Compact finite difference schemes with spectral-like resolution
    • S.K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys. 103 (1992) 16-42.
    • (1992) J. Comput. Phys. , vol.103 , pp. 16-42
    • Lele, S.K.1
  • 14
    • 0024304690 scopus 로고
    • Finite difference methods for solving the two-dimensional advection-diffusion equation
    • B.J. Noye, H.H. Tan, Finite difference methods for solving the two-dimensional advection-diffusion equation, Internat. J. Numer. Methods Fluids 9 (1989) 75-98.
    • (1989) Internat. J. Numer. Methods Fluids , vol.9 , pp. 75-98
    • Noye, B.J.1    Tan, H.H.2
  • 21
    • 0004205648 scopus 로고
    • High accuracy non-centered compact difference schemes for fluid dynamics applications
    • World Scientific, Singapore
    • A.I. Tolstykh, High accuracy non-centered compact difference schemes for fluid dynamics applications, Series on Advances in Mathematics for Applied Sciences, Vol. 21, World Scientific, Singapore, 1994.
    • (1994) Series on Advances in Mathematics for Applied Sciences , vol.21
    • Tolstykh, A.I.1
  • 22
    • 84944483089 scopus 로고
    • Theory of flow electrons and holes in germanium and other semiconductors
    • W.V. Van Roosbroeck, Theory of flow electrons and holes in germanium and other semiconductors, Bell Syst. Tech. J. 29 (1950) 650-607.
    • (1950) Bell Syst. Tech. J. , vol.29 , pp. 650-1607
    • Van Roosbroeck, W.V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.