-
1
-
-
0002887350
-
3: A local approach
-
Nowacki, H. and Kaklis, P.D. (Eds.), B.G. Teubner, Stuttgart
-
3: A local approach, in: Nowacki, H. and Kaklis, P.D. (Eds.), Creating Fair and Shape-Preserving Curves and Surfaces, B.G. Teubner, Stuttgart, 99 108.
-
(1998)
Creating Fair and Shape-Preserving Curves and Surfaces
, pp. 99-108
-
-
Asaturyan, S.1
Costantini, P.2
Manni, C.3
-
2
-
-
0002187459
-
Shape-preserving interpolation with variable degree polynomial splines
-
Hoschek, J. and Kaklis, P.D. (Eds.), B.G. Teubner, Stuttgart
-
Costantini, P. (1996), Shape-preserving interpolation with variable degree polynomial splines, in: Hoschek, J. and Kaklis, P.D. (Eds.), Advanced Course on FAIRSHAPE, B.G. Teubner, Stuttgart, 87-114.
-
(1996)
Advanced Course on FAIRSHAPE
, pp. 87-114
-
-
Costantini, P.1
-
3
-
-
0001809868
-
Variable degree polynomial splines
-
Le Méhauté, A., Rabut, C. and Schumaker, L.L. (Eds.), Vanderbilt Univ. Press, Nashville
-
Costantini, P. (1997), Variable degree polynomial splines, in: Le Méhauté, A., Rabut, C. and Schumaker, L.L. (Eds.), Curves and Surfaces with Applications in CAGD, Vanderbilt Univ. Press, Nashville, 85-94.
-
(1997)
Curves and Surfaces with Applications in CAGD
, pp. 85-94
-
-
Costantini, P.1
-
5
-
-
0001156074
-
Total positivity and the shape of curves
-
Gasca, M. and Micchelli, C.A. (Eds.), Kluwer, Dordrecht
-
Goodman, T.N.T. (1996), Total positivity and the shape of curves, in: Gasca, M. and Micchelli, C.A. (Eds.), Total Positivity and Its Applications, Kluwer, Dordrecht, 157-186.
-
(1996)
Total Positivity and Its Applications
, pp. 157-186
-
-
Goodman, T.N.T.1
-
6
-
-
0007178356
-
-
RR 1018-M, IMAG, Université Joseph Fourier, Grenoble
-
Goodman, T.N.T. and Mazure, M.L. (1999), Blossoming Beyond Extended Chebyshev Spaces, RR 1018-M, IMAG, Université Joseph Fourier, Grenoble.
-
(1999)
Blossoming Beyond Extended Chebyshev Spaces
-
-
Goodman, T.N.T.1
Mazure, M.L.2
-
7
-
-
0003519398
-
-
A K Peters, Wellesley, MA
-
Hoschek, J. and Lasser, D. (1993), Foundamentals of Computer Aided Geometric Design, A K Peters, Wellesley, MA.
-
(1993)
Foundamentals of Computer Aided Geometric Design
-
-
Hoschek, J.1
Lasser, D.2
-
8
-
-
0000421970
-
Convexity preserving polynomial splines of non-uniform degree
-
Kaklis, P.D. and Pandelis, D.G. (1990), Convexity preserving polynomial splines of non-uniform degree, IMA J. Numer. Anal. 10, 223-234.
-
(1990)
IMA J. Numer. Anal.
, vol.10
, pp. 223-234
-
-
Kaklis, P.D.1
Pandelis, D.G.2
-
9
-
-
0029244197
-
Convexity preserving interpolatory parametric splines of non-uniform polynomial degree
-
Kaklis, P.D. and Sapidis, N.S. (1995), Convexity preserving interpolatory parametric splines of non-uniform polynomial degree, Comput. Aided Geom. Design 12, 1-26.
-
(1995)
Comput. Aided Geom. Design
, vol.12
, pp. 1-26
-
-
Kaklis, P.D.1
Sapidis, N.S.2
-
11
-
-
0000619595
-
GB-splines and their properties
-
Kvasov, B.I. (1996), GB-splines and their properties, Ann. Numer. Math. 3, 139 149.
-
(1996)
Ann. Numer. Math.
, vol.3
, pp. 139-149
-
-
Kvasov, B.I.1
-
12
-
-
0007154571
-
Generalized tension B-splines
-
Le Méhauté, A., Rabut, C. and Schumaker, L.L. (Eds.), Vanderbilt Univ. Press, Nashville
-
Kvasov, B.I. and Sattayathan, P. (1997), Generalized tension B-splines, in: Le Méhauté, A., Rabut, C. and Schumaker, L.L. (Eds.), Curves and Surfaces with Applications in CAGD, Vanderbilt Univ. Press, Nashville, 247-254.
-
(1997)
Curves and Surfaces with Applications in CAGD
, pp. 247-254
-
-
Kvasov, B.I.1
Sattayathan, P.2
-
13
-
-
85031568324
-
-
RR 1003-M, IMAG, Université Joseph Fourier, Grenoble
-
Mazure, M.L. (1998), Chebyshev-Bernstein Bases, RR 1003-M, IMAG, Université Joseph Fourier, Grenoble.
-
(1998)
Chebyshev-Bernstein Bases
-
-
Mazure, M.L.1
-
14
-
-
0031343364
-
A new family of convex splines for data interpolation
-
Messac, A. and Sivanandam, A. (1997), A new family of convex splines for data interpolation, Computer. Aided Geom. Design 15, 39 59.
-
(1997)
Computer. Aided Geom. Design
, vol.15
, pp. 39-59
-
-
Messac, A.1
Sivanandam, A.2
-
16
-
-
0007290081
-
VP-splines, an extension of twice differentiable interpolation
-
ARO Report 76-3, US Army Research Office, Research Triangle Park, NC
-
Soanes, R.W. (1976), VP-splines, an extension of twice differentiable interpolation, in: Proceedings of 1976 Army Numerical Analysis and Computer Conf., ARO Report 76-3, US Army Research Office, Research Triangle Park, NC, 141 152.
-
(1976)
Proceedings of 1976 Army Numerical Analysis and Computer Conf.
, pp. 141-152
-
-
Soanes, R.W.1
|