-
1
-
-
0001928973
-
-
and references therein
-
A. T. Winfree, Chaos 8, 1 (1998), and references therein.
-
(1998)
Chaos
, vol.8
, pp. 1
-
-
Winfree, A.T.1
-
2
-
-
2642658847
-
-
F. X. Witkowski, L. J. Leon, P. A. Penkoske, W. R. Giles, M. L. Spano, W. L. Ditto, and A. T. Winfree, Nature (London) 392, 78 (1998).
-
(1998)
Nature (London)
, vol.392
, pp. 78
-
-
Witkowski, F.X.1
Leon, L.J.2
Penkoske, P.A.3
Giles, W.R.4
Spano, M.L.5
Ditto, W.L.6
Winfree, A.T.7
-
3
-
-
0004095143
-
-
R. Kapral, K. Showalter, Kluwer Academic, Dordrecht
-
Chemical Waves and Patterns, edited by R. Kapral and K. Showalter (Kluwer Academic, Dordrecht, 1993).
-
(1993)
Chemical Waves and Patterns
-
-
-
6
-
-
4243566346
-
-
Y. A. Astrov, I. Müller, E. Ammelt, and H.-G. Purwins, Phys. Rev. Lett. 80, 5341 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 5341
-
-
Astrov, Y.A.1
Müller, I.2
Ammelt, E.3
Purwins, H.-G.4
-
9
-
-
33748386889
-
-
V. Petrov, Q. Ouyang, G. Li, and H. L. Swinney, J. Phys. Chem. 100, 18 992 (1996).
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 18-992
-
-
Petrov, V.1
Ouyang, Q.2
Li, G.3
Swinney, H.L.4
-
13
-
-
0027402092
-
-
A. M. Pertsov, J. M. Davidenko, R. Salomonz, W. Baxter, and J. Jalife, Circ. Res. 72, 631 (1992).
-
(1992)
Circ. Res.
, vol.72
, pp. 631
-
-
Pertsov, A.M.1
Davidenko, J.M.2
Salomonz, R.3
Baxter, W.4
Jalife, J.5
-
15
-
-
21544438058
-
-
M. Bär, A. K. Bangia, I. G. Kevrekidis, G. Haas, H.-H. Rotermund, and G. Ertl, J. Phys. Chem. 100, 19 106 (1996).
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 19-106
-
-
Bär, M.1
Bangia, A.K.2
Kevrekidis, I.G.3
Haas, G.4
Rotermund, H.-H.5
Ertl, G.6
-
20
-
-
5244310829
-
-
P. E. Cladis, P. Palffy-Muhoray, Addison-Wesley, Reading, MA
-
I. Aranson, L. Kramer, and A. Weber, in Spatio-Temporal Patterns in Nonequilibrium Complex Systems: NATO Advanced Research Workshop, edited by P. E. Cladis and P. Palffy-Muhoray (Addison-Wesley, Reading, MA, 1995), p. 479.
-
(1995)
Spatio-Temporal Patterns in Nonequilibrium Complex Systems: NATO Advanced Research Workshop
, pp. 479
-
-
Aranson, I.1
Kramer, L.2
Weber, A.3
-
27
-
-
35949007726
-
-
I. S. Aranson, L. Aranson, L. Kramer, and A. Weber, Phys. Rev. A 46, R2992 (1992).
-
(1992)
Phys. Rev. A
, vol.46
-
-
Aranson, I.S.1
Aranson, L.2
Kramer, L.3
Weber, A.4
-
30
-
-
0001515222
-
-
M. Hendrey, E. Ott, and T. M. Antonsen, Jr., Phys. Rev. Lett. 82, 859 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 859
-
-
Hendrey, M.1
Ott, E.2
Antonsen, T.M.3
-
31
-
-
0001147755
-
-
This homogeneous mechanism becomes exponentially slow as the domains grow in size. Thus it is not responsible for the relatively fast domination of a single spiral in our inhomogeneous computations [e.g., Fig. 11 (homogeneous) at (Formula presented) and Fig. 22(c) (inhomogeneous) at the earlier time (Formula presented) are for the same values of (Formula presented) and (Formula presented) and the same initial conditions]
-
I. Aranson, L. Kramer, and A. Weber, Phys. Rev. E 48, R9 (1993). This homogeneous mechanism becomes exponentially slow as the domains grow in size. Thus it is not responsible for the relatively fast domination of a single spiral in our inhomogeneous computations [e.g., Fig. 11 (homogeneous) at (Formula presented) and Fig. 22(c) (inhomogeneous) at the earlier time (Formula presented) are for the same values of (Formula presented) and (Formula presented) and the same initial conditions].
-
(1993)
Phys. Rev. E
, vol.48
-
-
Aranson, I.1
Kramer, L.2
Weber, A.3
-
32
-
-
0040724671
-
-
K. Nam, E. Ott, M. Gabbay, and P. Guzdar, Physica D 118, 69 (1998).
-
(1998)
Physica D
, vol.118
, pp. 69
-
-
Nam, K.1
Ott, E.2
Gabbay, M.3
Guzdar, P.4
-
33
-
-
85036215325
-
-
This argument neglects motion of the vortices such as the slow drift due to the inhomogeneity, Eq. (34)
-
This argument neglects motion of the vortices such as the slow drift due to the inhomogeneity, Eq. (34).
-
-
-
-
34
-
-
85036136972
-
-
For (Formula presented) the wave numbers (Formula presented) and the dominant spiral will have the highest frequency
-
For (Formula presented) the wave numbers (Formula presented) and the dominant spiral will have the highest frequency.
-
-
-
-
35
-
-
85036365452
-
-
Otherwise the transformation (Formula presented) (Formula presented) and (Formula presented) could be used to rescale (Formula presented) to unity
-
Otherwise the transformation (Formula presented) (Formula presented) and (Formula presented) could be used to rescale (Formula presented) to unity.
-
-
-
-
37
-
-
85036274539
-
-
Chaotic or quasiperiodic vortex motion could result if the inhomogeneity had a slow periodic time dependency, or if the gradient length were short enough so that our analysis yielding (Formula presented) did not apply. In regard to the latter, see Aranson et al. 19, who observe quasiperiodic motion in the case of a strong localized gradient
-
Chaotic or quasiperiodic vortex motion could result if the inhomogeneity had a slow periodic time dependency, or if the gradient length were short enough so that our analysis yielding (Formula presented) did not apply. In regard to the latter, see Aranson et al. 19, who observe quasiperiodic motion in the case of a strong localized gradient.
-
-
-
|