메뉴 건너뛰기




Volumn 245, Issue 1, 2000, Pages 124-141

The global dynamic behavior of the competition model of three species

Author keywords

Extinction; dominant; local coordinate chart; diffeomorphism

Indexed keywords


EID: 0034179286     PISSN: 0022247X     EISSN: None     Source Type: Journal    
DOI: 10.1006/jmaa.2000.6742     Document Type: Article
Times cited : (12)

References (15)
  • 1
    • 0000268789 scopus 로고
    • Nonlinear aspects of competition between three species
    • May R. M., Leonard W. J. Nonlinear aspects of competition between three species. SIAM J. Appl. Math. 29:1975;243-253.
    • (1975) SIAM J. Appl. Math. , vol.29 , pp. 243-253
    • May R., M.1    Leonard W., J.2
  • 4
    • 0002545780 scopus 로고
    • On ω-limit for competition between three species
    • Schuster P., Sigmund K., Wolf R. On ω-limit for competition between three species. SIAM J. Appl. Math. 37:1979;49-54.
    • (1979) SIAM J. Appl. Math. , vol.37 , pp. 49-54
    • Schuster, P.1    Sigmund, K.2    Wolf, R.3
  • 5
    • 0002506031 scopus 로고
    • The spatial periodic solution of LV model
    • Zhang X.-a., Liang Z.-j. The spatial periodic solution of LV model. Chinese Sci. Bull. 40:1995;1934-1937.
    • (1995) Chinese Sci. Bull. , vol.40 , pp. 1934-1937
    • Zhang, X.-a.1    Liang, Z.-j.2
  • 6
    • 0031997312 scopus 로고    scopus 로고
    • On the asymmetric May-Leonard model of three competing species
    • Chi C.-w., Hsu S., Wu L.-h. On the asymmetric May-Leonard model of three competing species. SIAM J. Appl. Math. 58:1998;211-226.
    • (1998) SIAM J. Appl. Math. , vol.58 , pp. 211-226
    • Chi, C.-w.1    Hsu, S.2    Wu, L.-h.3
  • 7
    • 0000926545 scopus 로고    scopus 로고
    • On a Lotka-Volterra model which can be projected to a sphere
    • Uno T., Odani K. On a Lotka-Volterra model which can be projected to a sphere. Nonlinear Anal. Theory Methods Appl. 30:1997;1405-1410.
    • (1997) Nonlinear Anal. Theory Methods Appl. , vol.30 , pp. 1405-1410
    • Uno, T.1    Odani, K.2
  • 8
    • 0001591290 scopus 로고
    • Asymptotic behavior in the dynamics competing species
    • Coste J., Peiraud J., Coullet P. Asymptotic behavior in the dynamics competing species. SIAM J. Appl. Math. 36:1979;516-543.
    • (1979) SIAM J. Appl. Math. , vol.36 , pp. 516-543
    • Coste, J.1    Peiraud, J.2    Coullet, P.3
  • 9
    • 0003264465 scopus 로고
    • Theory of Limit Cycles
    • Providence: American Math. Society
    • Ye Y.-q. Theory of Limit Cycles. Translations of Mathematical Monographs. 66:1986;American Math. Society, Providence.
    • (1986) Translations of Mathematical Monographs , vol.66
    • Ye, Y.-q.1
  • 10
    • 0001328254 scopus 로고
    • Generic properties of polynomial vector fields at infinity
    • Gonzeles E. A. Generic properties of polynomial vector fields at infinity. Trans. Amer. Math. Soc. 143:1969;201-222.
    • (1969) Trans. Amer. Math. Soc. , vol.143 , pp. 201-222
    • Gonzeles E., A.1
  • 11
    • 0002507760 scopus 로고    scopus 로고
    • Differential Equations and Control Theory
    • Z.-q. Deng, Z.-j. Liang, G. Lu, & S.-g. Ruan. New York: Dekker
    • Zhang X.-a., Liang Z. The geometric properties of homogeneous polynomial vector fields. Deng Z.-q., Liang Z.-j., Lu G., Ruan S.-g. Differential Equations and Control Theory. Lecture Notes in Pure and Applied Math. 176:1996;Dekker, New York.
    • (1996) Lecture Notes in Pure and Applied Math. , vol.176
    • Zhang, X.-a.1    Liang, Z.2
  • 14
    • 0000885375 scopus 로고
    • Systems of differential equations which are competitive and cooperative. I. Limit sets
    • Hirsch M. W. Systems of differential equations which are competitive and cooperative. I. Limit sets. SIAM J. Math. Anal. 13:1982;167-179.
    • (1982) SIAM J. Math. Anal. , vol.13 , pp. 167-179
    • Hirsch M., W.1
  • 15
    • 38249039875 scopus 로고
    • Periodic Orbits of competitive and cooperative systems
    • Smith H. Periodic Orbits of competitive and cooperative systems. J. Differential Equations. 65:1986;361-373.
    • (1986) J. Differential Equations , vol.65 , pp. 361-373
    • Smith, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.