-
1
-
-
0001259317
-
An optimization problem related to balancing loads on SONET rings
-
[1] S. Cosares and I. Saniee, An optimization problem related to balancing loads on SONET rings, Telecommun Syst 3 (1994), 165-181.
-
(1994)
Telecommun Syst
, vol.3
, pp. 165-181
-
-
Cosares, S.1
Saniee, I.2
-
2
-
-
85037793482
-
-
Berlin Center for High Performance Scientific Computing, Preprint No. SC 94-16
-
[2] C.E. Ferreira, A. Martin, C.C. de Souza, R. Weismantel, and L.A. Wolsey, Formulation and valid inequalities for the node capacitated graph partitioning problem, Berlin Center for High Performance Scientific Computing, Preprint No. SC 94-16, 1994.
-
(1994)
Formulation and Valid Inequalities for the Node Capacitated Graph Partitioning Problem
-
-
Ferreira, C.E.1
Martin, A.2
De Souza, C.C.3
Weismantel, R.4
Wolsey, L.A.5
-
3
-
-
0001610390
-
Min-cut clustering
-
[3] E.L. Johnson, A. Mehrotra, and G.L. Nemhauser, Min-cut clustering, Math Program 62 (1993), 133-151.
-
(1993)
Math Program
, vol.62
, pp. 133-151
-
-
Johnson, E.L.1
Mehrotra, A.2
Nemhauser, G.L.3
-
4
-
-
0028548966
-
Clustering for the design of SONET rings in interoffice telecommunications
-
1994.
-
[4] M. Laguna, 1994. Clustering for the design of SONET rings in interoffice telecommunications, Mgmt Sci 40 (1994), 1533-1541.
-
(1994)
Mgmt Sci
, vol.40
, pp. 1533-1541
-
-
Laguna, M.1
-
5
-
-
0002366571
-
-
Working paper, Department of Industrial Engineering, Korea University
-
[5] Y. Lee, J. Han, and S. Kim, A physical ring design problem of synchronous optical network (SONET) for mass market multimedia telecommunication services, Working paper, Department of Industrial Engineering, Korea University, 1997.
-
(1997)
A Physical Ring Design Problem of Synchronous Optical Network (SONET) for Mass Market Multimedia Telecommunication Services
-
-
Lee, Y.1
Han, J.2
Kim, S.3
-
6
-
-
0000349497
-
Strong formulations and cutting planes for designing digital data service networks
-
[6] Y. Lee, L. Lu, Y. Qiu, and F. Glover. Strong formulations and cutting planes for designing digital data service networks, Telecommun Syst 2 (1994), 261-274.
-
(1994)
Telecommun Syst
, vol.2
, pp. 261-274
-
-
Lee, Y.1
Lu, L.2
Qiu, Y.3
Glover, F.4
-
8
-
-
85037787764
-
-
Working paper, Department of Industrial and Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA
-
[8] H. Sherali, J. Smith, and Y. Lee, A branch-and-cut algorithm for solving an intraring synchronous optical network design problem allowing demand splitting, Working paper, Department of Industrial and Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 1999.
-
(1999)
A Branch-and-cut Algorithm for Solving an Intraring Synchronous Optical Network Design Problem Allowing Demand Splitting
-
-
Sherali, H.1
Smith, J.2
Lee, Y.3
-
9
-
-
0032156060
-
Optimal placement of add/drop multiplexers: Heuristic and exact algorithms
-
[9] A. Sutter, F.O. Vanderbeck, and L.A. Wolsey, Optimal placement of add/drop multiplexers: Heuristic and exact algorithms, Oper Res 46 (1998), 719-728.
-
(1998)
Oper Res
, vol.46
, pp. 719-728
-
-
Sutter, A.1
Vanderbeck, F.O.2
Wolsey, L.A.3
-
10
-
-
0028257742
-
Survivable SONET networks-design methodology
-
[10] O.J. Wasem, T.-H. Wu, and R.H. Cardwell, Survivable SONET networks-design methodology, IEEE J Sel Area Commun 12 (1994), 205-212.
-
(1994)
IEEE J Sel Area Commun
, vol.12
, pp. 205-212
-
-
Wasem, O.J.1
Wu, T.-H.2
Cardwell, R.H.3
-
11
-
-
0003762281
-
-
Artech, New York
-
[11] T.-H. Wu, Fiber network service survivability: Architecture, technologies, and design, Artech, New York, 1992.
-
(1992)
Fiber Network Service Survivability: Architecture, Technologies, and Design
-
-
Wu, T.-H.1
-
12
-
-
0002097838
-
Feasibility study of a high-speed SONET self-healing ring architecture in future interoffice fiber networks
-
[12] T.-H. Wu and M. Burrowes, Feasibility study of a high-speed SONET self-healing ring architecture in future interoffice fiber networks, IEEE Commun Mag 28 (1990), 33-43.
-
(1990)
IEEE Commun Mag
, vol.28
, pp. 33-43
-
-
Wu, T.-H.1
Burrowes, M.2
|