-
1
-
-
84936358059
-
Perturbation theory of Kepler motion based on spinor regularization
-
Kustaanheimo P., Stiefel E. Perturbation theory of Kepler motion based on spinor regularization. J. Reine Angew. Math. 218:1965;204.
-
(1965)
J. Reine Angew. Math.
, vol.218
, pp. 204
-
-
Kustaanheimo, P.1
Stiefel, E.2
-
3
-
-
0001498252
-
On the regularization of the Kepler problem
-
Kummer M. On the regularization of the Kepler problem. Commun. Math. Phys. 84:1982;133.
-
(1982)
Commun. Math. Phys.
, vol.84
, pp. 133
-
-
Kummer, M.1
-
4
-
-
0001651719
-
Degeneracy in the presence of a magnetic monopole
-
McIntosh H.V., Cisneros A. Degeneracy in the presence of a magnetic monopole. J. Math. Phys. 11:1970;896.
-
(1970)
J. Math. Phys.
, vol.11
, pp. 896
-
-
McIntosh, H.V.1
Cisneros, A.2
-
5
-
-
0001457709
-
The four-dimensional conformal Kepler problem reduces to the three-dimensional Kepler problem with a centrifugal potential and Dirac's monopole field. Classical theory
-
Iwai T., Uwano Y. The four-dimensional conformal Kepler problem reduces to the three-dimensional Kepler problem with a centrifugal potential and Dirac's monopole field. Classical theory. J. Math. Phys. 27:1986;1523.
-
(1986)
J. Math. Phys.
, vol.27
, pp. 1523
-
-
Iwai, T.1
Uwano, Y.2
-
6
-
-
0000754303
-
The geometry of the SU(2) Kepler problem
-
Iwai T. The geometry of the SU(2) Kepler problem. J. Geom. Phys. 7:1990;507.
-
(1990)
J. Geom. Phys.
, vol.7
, pp. 507
-
-
Iwai, T.1
-
7
-
-
0000941961
-
2 monopole harmonics
-
2 monopole harmonics J. Math. Phys. 19:1978;320.
-
(1978)
J. Math. Phys.
, vol.19
, pp. 320
-
-
Yang, C.N.1
-
8
-
-
0000568337
-
Sur la variété de Képler
-
Academic Press, New York, NY
-
J.M. Souriau, Sur la variété de Képler, in: Symposia Mathematica XIV, Academic Press, New York, NY, 1974.
-
(1974)
in: Symposia Mathematica
, vol.14
-
-
J.M. Souriau1
-
11
-
-
0000880226
-
On the three-dimensional lunar problem and other perturbation problems of the Kepler problem
-
Kummer M. On the three-dimensional lunar problem and other perturbation problems of the Kepler problem. J. Math. Anal. Appl. 93:1983;142.
-
(1983)
J. Math. Anal. Appl.
, vol.93
, pp. 142
-
-
Kummer, M.1
-
12
-
-
0022227013
-
A group theoretical approach to a certain class of perturbations of the Kepler problem
-
Kummer M. A group theoretical approach to a certain class of perturbations of the Kepler problem. Arch. Rat. Mech. Anal. 91:1985;55.
-
(1985)
Arch. Rat. Mech. Anal.
, vol.91
, pp. 55
-
-
Kummer, M.1
-
13
-
-
51249188398
-
Kepler's equation, Fock variables, Bacry's generators and Dirac brackets
-
Györgyi G. Kepler's equation, Fock variables, Bacry's generators and Dirac brackets. Nuovo Cimento A. 53:1968;957.
-
(1968)
Nuovo Cimento A
, vol.53
, pp. 957
-
-
Györgyi, G.1
-
14
-
-
0002624171
-
Kepler's equation, Fock variables, Bacry's generators II
-
Györgyi G. Kepler's equation, Fock variables, Bacry's generators II. Nuovo Cimento A. 62:1969;449.
-
(1969)
Nuovo Cimento A
, vol.62
, pp. 449
-
-
Györgyi, G.1
-
15
-
-
0010245196
-
SO(4,2)-formulation for the symmetry breaking in relativistic Kepler problem with or without magnetic charge
-
Barut A.O., Bornzin G.L. SO(4,2)-formulation for the symmetry breaking in relativistic Kepler problem with or without magnetic charge. J. Math. Phys. 12:1971;841.
-
(1971)
J. Math. Phys.
, vol.12
, pp. 841
-
-
Barut, A.O.1
Bornzin, G.L.2
-
16
-
-
36749111599
-
O(4,2) symmetry and the classical Kepler problem
-
Tripathy K.C., Gupta R., Anand J.D. O(4,2) symmetry and the classical Kepler problem. J. Math. Phys. 16:1975;1139.
-
(1975)
J. Math. Phys.
, vol.16
, pp. 1139
-
-
Tripathy, K.C.1
Gupta, R.2
Anand, J.D.3
-
17
-
-
0002535661
-
Das Oszillator - Kepler Problem und die Lie-Algebra
-
Baumgarte J. Das Oszillator - Kepler Problem und die Lie-Algebra. J. Reine Angew. Math. 301:1978;59.
-
(1978)
J. Reine Angew. Math.
, vol.301
, pp. 59
-
-
Baumgarte, J.1
-
18
-
-
0002495814
-
On six-dimensional canonical realizations of the SO(4,2) algebra
-
Iosifescu M., Scutaru H. On six-dimensional canonical realizations of the SO(4,2) algebra. J. Math. Phys. 21:1980;2033.
-
(1980)
J. Math. Phys.
, vol.21
, pp. 2033
-
-
Iosifescu, M.1
Scutaru, H.2
-
20
-
-
21144484451
-
A dynamical group SU(2,2) and its use in the MIC-Kepler problem
-
Iwai T. A dynamical group SU(2,2) and its use in the MIC-Kepler problem. J. Phys. Math. Gen. A. 26:1993;609.
-
(1993)
J. Phys. Math. Gen. A
, vol.26
, pp. 609
-
-
Iwai, T.1
-
21
-
-
33749020105
-
Kepler-type dynamical symmetries of long-range monopole interactions
-
Cordani B., Fehér L.Gy., Horváthy P.A. Kepler-type dynamical symmetries of long-range monopole interactions. J. Math. Phys. 31:1990;202.
-
(1990)
J. Math. Phys.
, vol.31
, pp. 202
-
-
Cordani, B.1
Fehér, L.Gy.2
Horváthy, P.A.3
-
22
-
-
21344491987
-
Two kinds of generalized Taub-NUT metrics and the symmetry of associated dynamical systems
-
Iwai T., Katayama N. Two kinds of generalized Taub-NUT metrics and the symmetry of associated dynamical systems. J. Phys. Math. Gen. A. 27:1994;3179.
-
(1994)
J. Phys. Math. Gen. A
, vol.27
, pp. 3179
-
-
Iwai, T.1
Katayama, N.2
-
23
-
-
21344496263
-
Two classes of dynamical systems all of whoses bounded trajectories are closed
-
Iwai T., Katayama N. Two classes of dynamical systems all of whoses bounded trajectories are closed. J. Math. Phys. 35:1994;2914.
-
(1994)
J. Math. Phys.
, vol.35
, pp. 2914
-
-
Iwai, T.1
Katayama, N.2
-
24
-
-
21844527368
-
Multi-fold Kepler systems - Dynamical systems all of whoses bounded trajectories are closed
-
Iwai T., Katayama N. Multi-fold Kepler systems - dynamical systems all of whoses bounded trajectories are closed. J. Math. Phys. 36:1995;1790.
-
(1995)
J. Math. Phys.
, vol.36
, pp. 1790
-
-
Iwai, T.1
Katayama, N.2
-
25
-
-
0003972403
-
-
Academic Press, New York, NY
-
S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, chapter X, Academic Press, New York, NY, 1978.
-
(1978)
Differential Geometry, Lie Groups, and Symmetric Spaces, chapter X
-
-
S. Helgason1
-
28
-
-
0004282301
-
-
Benjamin/Cummings, Reading, MA
-
R. Abraham, J.E. Marsden, Foundations of Mechanics, 2nd ed., chapter 2, Benjamin/Cummings, Reading, MA, 1978.
-
(1978)
Foundations of Mechanics, 2nd ed., chapter 2
-
-
R. Abraham1
J.E. Marsden2
-
29
-
-
0030268662
-
The quantized SU(2) Kepler problem and its symmetry group for negative energies
-
Iwai T., Sunako T. The quantized SU(2) Kepler problem and its symmetry group for negative energies. J. Geom. Phys. 20:1996;250.
-
(1996)
J. Geom. Phys.
, vol.20
, pp. 250
-
-
Iwai, T.1
Sunako, T.2
-
30
-
-
0002487158
-
Global isomorphisms of lower dimensional Lie groups
-
Yokota I., Miyashita T. Global isomorphisms of lower dimensional Lie groups. J. Fuc. Sci. Shinshu Univ. 25:1990;60.
-
(1990)
J. Fuc. Sci. Shinshu Univ.
, vol.25
, pp. 60
-
-
Yokota, I.1
Miyashita, T.2
-
31
-
-
0033546036
-
SO(6,2) dynamical symmetry of the SU(2) MIC-Kepler problem
-
M.V. Pletyukhov, E.A. Tolkachev, SO(6,2) dynamical symmetry of the SU(2) MIC-Kepler problem, J. Phys. Math. Gen. A 32 (1999) L249.
-
(1999)
J. Phys. Math. Gen. A
, vol.32
-
-
M.V. Pletyukhov1
E.A. Tolkachev2
-
32
-
-
0002537088
-
Conformal regularization of the Kepler problem
-
Cordani B. Conformal regularization of the Kepler problem. Commun. Math. Phys. 103:1986;403.
-
(1986)
Commun. Math. Phys.
, vol.103
, pp. 403
-
-
Cordani, B.1
-
33
-
-
0002539025
-
Spinor regularization of the n-dimensional Kepler problem
-
Cordani B., Reina C. Spinor regularization of the n-dimensional Kepler problem. Lett. Math. Phys. 13:1987;79.
-
(1987)
Lett. Math. Phys.
, vol.13
, pp. 79
-
-
Cordani, B.1
Reina, C.2
|