메뉴 건너뛰기




Volumn 115, Issue 1-2, 2000, Pages 181-192

A discretization scheme for some conservative problems

Author keywords

34B15; 47H17; 65J15; 70K99; A priori error bound; Convergence theorem; Differential equation; Multipoint iteration; Nonlinear equations in Banach space; Recurrence relation; Third order method

Indexed keywords

APPROXIMATION THEORY; BOUNDARY VALUE PROBLEMS; CONVERGENCE OF NUMERICAL METHODS; FUNCTIONS; MATHEMATICAL MODELS; THEOREM PROVING;

EID: 0034159551     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0377-0427(99)00115-6     Document Type: Article
Times cited : (22)

References (9)
  • 3
    • 0031224545 scopus 로고    scopus 로고
    • Relaxing convergence conditions for an inverse-free Jarratt type approximation
    • Ezquerro J.A., Hernández M.A. Relaxing convergence conditions for an inverse-free Jarratt type approximation. J. Comput. Appl. Math. 83:1997;131-135.
    • (1997) J. Comput. Appl. Math. , vol.83 , pp. 131-135
    • Ezquerro, J.A.1    Hernández, M.A.2
  • 4
    • 0032182504 scopus 로고    scopus 로고
    • Remark on the convergence of the midpoint method under mild differentiability conditions
    • J.A. Ezquerro, M.A. Hernández, M.A. Salanova, Remark on the convergence of the midpoint method under mild differentiability conditions, J. Comput. Appl. Math. 98 (1998) 305-309.
    • (1998) J. Comput. Appl. Math. , vol.98 , pp. 305-309
    • Ezquerro, J.A.1    Hernández, M.A.2    Salanova, M.A.3
  • 5
    • 0009036856 scopus 로고
    • Generalizations of spline functions and applications to nonlinear boundary value and eigenvalue problems
    • Academic Press, New York
    • J.W. Jerome, R.S. Varga, Generalizations of spline functions and applications to nonlinear boundary value and eigenvalue problems, Theory and Applications of Spline Functions, Academic Press, New York, 1969.
    • (1969) Theory and Applications of Spline Functions
    • Jerome, J.W.1    Varga, R.S.2
  • 9
    • 0000205950 scopus 로고
    • A method for finding sharp error bounds for Newton's method under the Kantorovich assumptions
    • Yamamoto T. A method for finding sharp error bounds for Newton's method under the Kantorovich assumptions. Numer. Math. 49:1986;203-220.
    • (1986) Numer. Math. , vol.49 , pp. 203-220
    • Yamamoto, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.