-
1
-
-
33744769996
-
Deformation theory and quantization
-
F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Deformation theory and quantization, Ann. Phys. 111 (1978) 61.
-
(1978)
Ann. Phys.
, vol.111
, pp. 61
-
-
Bayen, F.1
Flato, M.2
Fronsdal, C.3
Lichnerowicz, A.4
Sternheimer, D.5
-
2
-
-
84952911698
-
Quantum mechanics as a statistical theory
-
J. Moyal, Quantum mechanics as a statistical theory, Proc. Cam. Phil. Soc. 45 (1945) 99.
-
(1945)
Proc. Cam. Phil. Soc.
, vol.45
, pp. 99
-
-
Moyal, J.1
-
3
-
-
33745014742
-
Quantum corrections for thermodynamic equilibrium
-
E. Wigner, Quantum corrections for thermodynamic equilibrium, Phys. Rev. 40 (1932) 749.
-
(1932)
Phys. Rev.
, vol.40
, pp. 749
-
-
Wigner, E.1
-
4
-
-
33745040449
-
On the principles of elementary quantum mechanics
-
H. Groenewold, On the principles of elementary quantum mechanics, Physica 12 (1946) 405.
-
(1946)
Physica
, vol.12
, pp. 405
-
-
Groenewold, H.1
-
5
-
-
0001885424
-
Quantum mechanics and the theory of groups
-
H. Weyl, Quantum mechanics and the theory of groups, Z. Phys. 46 (1927) 1.
-
(1927)
Z. Phys.
, vol.46
, pp. 1
-
-
Weyl, H.1
-
6
-
-
84972506966
-
A simple geometrical construction of deformation quantization
-
B. Fedosov, A simple geometrical construction of deformation quantization, J. Diff. Geometry 40 (1994) 213.
-
(1994)
J. Diff. Geometry
, vol.40
, pp. 213
-
-
Fedosov, B.1
-
7
-
-
0000035161
-
∞-covariance of the Weyl-Wigner-Groenewold-Moyal quantization
-
∞-covariance of the Weyl-Wigner-Groenewold-Moyal quantization, J. Math. Phys. 38 (11) (1997) 5515.
-
(1997)
J. Math. Phys.
, vol.38
, Issue.11
, pp. 5515
-
-
Deroli, T.1
Verciu, A.2
-
8
-
-
0010795998
-
W-symmetry in conformal field theory
-
hep-th/9210010
-
P. Bouwknegt, K. Schouetens, W-symmetry in conformal field theory, Phys. Rep. 223 (1993) 183-276, hep-th/9210010.
-
(1993)
Phys. Rep.
, vol.223
, pp. 183-276
-
-
Bouwknegt, P.1
Schouetens, K.2
-
9
-
-
13844271714
-
The geometry of w-gravity
-
W-Geometry, hep-th/9211113
-
C. Hull, The geometry of w-gravity, Phys. Lett. B 269 (1991) 257, W-Geometry, hep-th/9211113.
-
(1991)
Phys. Lett. B
, vol.269
, pp. 257
-
-
Hull, C.1
-
10
-
-
13844271714
-
The geometry of w-gravity
-
Geometry and W-gravity, hep-th/9301074
-
C. Hull, The geometry of w-gravity, Phys. Lett. B 269 (1991) 257, Geometry and W-gravity, hep-th/9301074.
-
(1991)
Phys. Lett. B
, vol.269
, pp. 257
-
-
Hull, C.1
-
11
-
-
0002650790
-
A Moyal quantization of the continous Toda field
-
C. Castro, A Moyal quantization of the continous Toda field, Phys. Lett. B 413 (1997) 53.
-
(1997)
Phys. Lett. B
, vol.413
, pp. 53
-
-
Castro, C.1
-
12
-
-
0001360481
-
SU (∞) (super) gauge theories and self dual (super) gravity
-
C. Castro, SU (∞) (super) gauge theories and self dual (super) gravity, J. Math. Phys. 34 (1993) 681.
-
(1993)
J. Math. Phys.
, vol.34
, pp. 681
-
-
Castro, C.1
-
13
-
-
0002421273
-
On W gravity, N = 2 strings and 2 + 2 SU (∞) Yang-Mills instantons
-
C. Castro, On W gravity, N = 2 strings and 2 + 2 SU (∞) Yang-Mills instantons, J. Math. Phys 35 (1994) 3013.
-
(1994)
J. Math. Phys
, vol.35
, pp. 3013
-
-
Castro, C.1
-
14
-
-
0000454114
-
∞ strings and the super Toda molecule
-
∞ strings and the super Toda molecule, J. Chaos Solitons and Fractals 7 (7) (1996) 711.
-
(1996)
J. Chaos Solitons and Fractals
, vol.7
, Issue.7
, pp. 711
-
-
Castro, C.1
-
16
-
-
0042629720
-
The lagrangian of self dual gravity as the limit of the SDYM lagrangian
-
J. Plebanski, M. Przanowski, The lagrangian of self dual gravity as the limit of the SDYM lagrangian, Phys. Lett. A 212 ( 1996) 22.
-
(1996)
Phys. Lett. A
, vol.212
, pp. 22
-
-
Plebanski, J.1
Przanowski, M.2
-
22
-
-
0642363984
-
M theory as a matrix theory: A conjecture
-
T. Banks, W. Fischler, S. Shenker, L. Susskind, M theory as a matrix theory: A conjecture, Phys. Rev. D 55 (1997) 112.
-
(1997)
Phys. Rev. D
, vol.55
, pp. 112
-
-
Banks, T.1
Fischler, W.2
Shenker, S.3
Susskind, L.4
-
25
-
-
0002041569
-
The Moyal algebra and integrable deformations of the self dual Einstein equations
-
I. Strachan, The Moyal algebra and integrable deformations of the self dual Einstein equations, Phys. Lett. B 283 (1992) 63.
-
(1992)
Phys. Lett. B
, vol.283
, pp. 63
-
-
Strachan, I.1
-
26
-
-
0001237954
-
Dressing operator to Moyal algebraic formulation of self-dual gravity
-
K. Takasaki, Dressing operator to Moyal algebraic formulation of self-dual gravity, J. Geom. and Phys. 14 (1994) 111.
-
(1994)
J. Geom. and Phys.
, vol.14
, pp. 111
-
-
Takasaki, K.1
-
27
-
-
0010136827
-
Geometry of N = 2 strings
-
H. Ooguri, C. Vafa, Geometry of N = 2 strings, Nuc. Phys. B 361 (1991) 469.
-
(1991)
Nuc. Phys. B
, vol.361
, pp. 469
-
-
Ooguri, H.1
Vafa, C.2
-
30
-
-
0000879490
-
Extended conformal symmetry in real heavens
-
Q.H. Park, Extended conformal symmetry in real heavens, Phys. Lett. B 236 (1990) 429.
-
(1990)
Phys. Lett. B
, vol.236
, pp. 429
-
-
Park, Q.H.1
-
31
-
-
0002959036
-
The large N limit of extended conformal symmetries
-
I. Bakas, The large N limit of extended conformal symmetries, Phys. Lett. B 228 (1989) 57.
-
(1989)
Phys. Lett. B
, vol.228
, pp. 57
-
-
Bakas, I.1
-
36
-
-
0033241151
-
The generalized Moyal Nahm and continous Moyal Toda equations
-
C. Castro, J. Plebanski, The generalized Moyal Nahm and continous Moyal Toda equations, J. Math. Phys. 40 (8) (1999) 3738.
-
(1999)
J. Math. Phys.
, vol.40
, Issue.8
, pp. 3738
-
-
Castro, C.1
Plebanski, J.2
-
50
-
-
0000635133
-
p-branes as composite antisymmetric tensor field theories
-
C. Castro, p-branes as composite antisymmetric tensor field theories. Int. J. Mod. Phys. A 13 (8) (1998) 1263-1292.
-
(1998)
Int. J. Mod. Phys. A
, vol.13
, Issue.8
, pp. 1263-1292
-
-
Castro, C.1
-
55
-
-
30244528329
-
Some new integrable equations from the self dual Yang-Mills equations
-
T. Ivanova, A. Popov, Some new integrable equations from the self dual Yang-Mills equations, Phys. Lett A 205 (1995) 158.
-
(1995)
Phys. Lett A
, vol.205
, pp. 158
-
-
Ivanova, T.1
Popov, A.2
-
58
-
-
34249967286
-
Continual analogs of contragredient lie algebras
-
M. Saveliev, A. Vershik, Continual analogs of contragredient lie algebras, Comm. Math. Phys. 126 (1989) 367.
-
(1989)
Comm. Math. Phys.
, vol.126
, pp. 367
-
-
Saveliev, M.1
Vershik, A.2
|