-
1
-
-
0003350963
-
Ergodic theory
-
Springer Verlag, Berlin
-
I. O. Cornfeld, S. V. Fomin, and Y. G. Sinai, "Ergodic theory," Grundlehren der matematischen Wissenschaften in Einzeldarstellungen (Springer Verlag, Berlin, 1982), Vol. 245.
-
(1982)
Grundlehren der Matematischen Wissenschaften in Einzeldarstellungen
, vol.245
-
-
Cornfeld, I.O.1
Fomin, S.V.2
Sinai, Y.G.3
-
3
-
-
0002353263
-
On the dynamical meaning of spectral dimensions
-
and references therein
-
I. Guarneri, "On the dynamical meaning of spectral dimensions," Ann. Inst. Henri Poincare 68, 491 (1998), and references therein.
-
(1998)
Ann. Inst. Henri Poincare
, vol.68
, pp. 491
-
-
Guarneri, I.1
-
4
-
-
4243693952
-
Numerical study on ergodic properties of triangular billiards
-
R. Artuso, G. Casati, and I. Guarneri, "Numerical study on ergodic properties of triangular billiards," Phys. Rev. E 55, 1 (1997).
-
(1997)
Phys. Rev. E
, vol.55
, pp. 1
-
-
Artuso, R.1
Casati, G.2
Guarneri, I.3
-
5
-
-
45949131024
-
Billiards in polygons
-
E. Gutkin, "Billiards in polygons," Physica D 19, 311 (1986).
-
(1986)
Physica D
, vol.19
, pp. 311
-
-
Gutkin, E.1
-
6
-
-
0030541868
-
Billiards in polygons: Survey of recent results
-
E. Gutkin, "Billiards in polygons: survey of recent results," J. Stat. Phys. 83, 7 (1996).
-
(1996)
J. Stat. Phys.
, vol.83
, pp. 7
-
-
Gutkin, E.1
-
7
-
-
85037772196
-
-
note
-
Such a filtering procedure does not affect results pertaining to B and C classes.
-
-
-
-
8
-
-
0017851927
-
On the use of windows for harmonic analysis with the discrete Fourier transform
-
F. J. Harris, "On the use of windows for harmonic analysis with the discrete Fourier transform," Proc. IEEE 66, 51 (1978).
-
(1978)
Proc. IEEE
, vol.66
, pp. 51
-
-
Harris, F.J.1
-
9
-
-
85037758697
-
-
note
-
Further details about the procedure are described in Ref. 4 (see also Ref. 12, where this technique has been applied to the analysis of kicked quantum systems).
-
-
-
-
10
-
-
85000265351
-
Lower bounds on wave packet by packing dimensions of spectral measures
-
I. Guarneri and H. Schulz-Baldes, "Lower bounds on wave packet by packing dimensions of spectral measures," to appear in Electron. J. Math. Phys.
-
Electron. J. Math. Phys.
-
-
Guarneri, I.1
Schulz-Baldes, H.2
-
11
-
-
4244105543
-
Slow decay of temporal correlations in quantum systems with Cantor spectra
-
R. Ketzmerick, G. Petschel, and T. Geisel, "Slow decay of temporal correlations in quantum systems with Cantor spectra," Phys. Rev. Lett. 69, 695 (1992); M. Holschneider, "Fractal wavelet dimensions and localization," Commun. Math. Phys. 160, 457 (1994).
-
(1992)
Phys. Rev. Lett.
, vol.69
, pp. 695
-
-
Ketzmerick, R.1
Petschel, G.2
Geisel, T.3
-
12
-
-
21344481355
-
Fractal wavelet dimensions and localization
-
R. Ketzmerick, G. Petschel, and T. Geisel, "Slow decay of temporal correlations in quantum systems with Cantor spectra," Phys. Rev. Lett. 69, 695 (1992); M. Holschneider, "Fractal wavelet dimensions and localization," Commun. Math. Phys. 160, 457 (1994).
-
(1994)
Commun. Math. Phys.
, vol.160
, pp. 457
-
-
Holschneider, M.1
-
13
-
-
84956207062
-
Thermodynamic analysis of the spectral measure for kicked quantum system
-
R. Artuso, D. Belluzzo, and G. Casati, "Thermodynamic analysis of the spectral measure for kicked quantum system," Europhys. Lett. 25, 181 (1994).
-
(1994)
Europhys. Lett.
, vol.25
, pp. 181
-
-
Artuso, R.1
Belluzzo, D.2
Casati, G.3
-
14
-
-
85037775144
-
-
note
-
2(t)/log(t)] this definition has the advantage of ignoring all kinds of subdominant contributions.
-
-
-
-
15
-
-
0032221727
-
Anomalous transport: A mathematical framework
-
H. Schulz-Baldes and J. Bellissard, "Anomalous transport: a mathematical framework," Rev. Math. Phys. 10, 1 (1998).
-
(1998)
Rev. Math. Phys.
, vol.10
, pp. 1
-
-
Schulz-Baldes, H.1
Bellissard, J.2
-
16
-
-
0031518894
-
On scaling in relation to singular spectra
-
A. Hof, "On scaling in relation to singular spectra," Commun. Math. Phys. 184, 567 (1997).
-
(1997)
Commun. Math. Phys.
, vol.184
, pp. 567
-
-
Hof, A.1
-
17
-
-
85037752583
-
-
note
-
As a matter of fact, absolute continuity of the spectrum implies the strong mixing property (see Ref. 1).
-
-
-
|