-
1
-
-
0018454769
-
Fast probabilistic algorithms for Hamiltonian circuits and matchings
-
D. Angluin and L. G. Valiant, Fast probabilistic algorithms for Hamiltonian circuits and matchings, J. Comput. System Sci. 48 (1979), 155-193.
-
(1979)
J. Comput. System Sci.
, vol.48
, pp. 155-193
-
-
Angluin, D.1
Valiant, L.G.2
-
3
-
-
33847537342
-
-
pubs.html, 1996.
-
(1996)
-
-
-
4
-
-
0030819669
-
Empirical support for winnow and weighted-majority algorithms: Results on calendar scheduling domain
-
A. Blum, Empirical support for winnow and weighted-majority algorithms: results on calendar scheduling domain, Mach. Learning 26 (1997), 5-23.
-
(1997)
Mach. Learning
, vol.26
, pp. 5-23
-
-
Blum, A.1
-
5
-
-
0029254047
-
Learning in the presence of finitely or infinitely many irrelevant attributes
-
A. Blum, L. Hellerstein, and N. Littlestone, Learning in the presence of finitely or infinitely many irrelevant attributes, J. Comput. System Sci. 50 (1995), 32-40.
-
(1995)
J. Comput. System Sci.
, vol.50
, pp. 32-40
-
-
Blum, A.1
Hellerstein, L.2
Littlestone, N.3
-
6
-
-
0021522644
-
How to generate cryptographically strong sequences of pseudo-random bits
-
M. Blum and S. Micali, How to generate cryptographically strong sequences of pseudo-random bits, SIAM J. Comput. 13 (1984), 850-864.
-
(1984)
SIAM J. Comput.
, vol.13
, pp. 850-864
-
-
Blum, M.1
Micali, S.2
-
7
-
-
0023646365
-
Occam's razor
-
A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, Occam's razor, Inform. Process. Lett. 24 (1987), 377-380.
-
(1987)
Inform. Process. Lett.
, vol.24
, pp. 377-380
-
-
Blumer, A.1
Ehrenfeucht, A.2
Haussler, D.3
Warmuth, M.K.4
-
8
-
-
0032090599
-
Attribute efficient learning with queries
-
N. Bshouty and L. Hellerstein, Attribute efficient learning with queries, J. Comput. System Sci. 56 (1998), 310-319.
-
(1998)
J. Comput. System Sci.
, vol.56
, pp. 310-319
-
-
Bshouty, N.1
Hellerstein, L.2
-
10
-
-
0030711336
-
Computational sample complexity
-
ACM Press, New York
-
S. E. Decatur, O. Goldreich, and D. Ron, Computational sample complexity, in "Proc. Tenth Ann. Conf. on Comput. Learning Theory," pp. 130-142, ACM Press, New York, 1997.
-
(1997)
Proc. Tenth Ann. Conf. on Comput. Learning Theory
, pp. 130-142
-
-
Decatur, S.E.1
Goldreich, O.2
Ron, D.3
-
11
-
-
0024739191
-
A general lower bound on the number of examples needed for learning
-
A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant, A general lower bound on the number of examples needed for learning, Inform. and Comput. 82 (1989), 247-261.
-
(1989)
Inform. and Comput.
, vol.82
, pp. 247-261
-
-
Ehrenfeucht, A.1
Haussler, D.2
Kearns, M.3
Valiant, L.4
-
12
-
-
0032662978
-
A winnow-based approach to spelling correction
-
A. R. Golding and D. Roth, A winnow-based approach to spelling correction, Mach. Learning 34 (1999), 107-130.
-
(1999)
Mach. Learning
, vol.34
, pp. 107-130
-
-
Golding, A.R.1
Roth, D.2
-
14
-
-
0001550782
-
Modern Cryptography, Probabilistic Proofs and Pseudo-randomness
-
Springer-Verlag, Berlin/New York
-
O. Goldreich, "Modern Cryptography, Probabilistic Proofs and Pseudo-randomness," Algorithms and Combinatorics Series, Vol. 17, Springer-Verlag, Berlin/New York, 1998.
-
(1998)
Algorithms and Combinatorics Series
, vol.17
-
-
Goldreich, O.1
-
15
-
-
0024868772
-
A hard-core predicate for all one-way functions
-
ACM Press, New York
-
O. Goldreich and L. Levin, A hard-core predicate for all one-way functions, in "Proc. 21st Ann. Symp. on Theory of Comp.," pp. 25-32, ACM Press, New York, 1995.
-
(1995)
Proc. 21st Ann. Symp. on Theory of Comp.
, pp. 25-32
-
-
Goldreich, O.1
Levin, L.2
-
17
-
-
0024082469
-
Quantifying inductive bias: AI learning algorithms and Valiant's learning framework
-
D. Haussler, Quantifying inductive bias: AI learning algorithms and Valiant's learning framework, Artificial Intelligence 36 (1988), 177-221.
-
(1988)
Artificial Intelligence
, vol.36
, pp. 177-221
-
-
Haussler, D.1
-
18
-
-
0001786780
-
Recent results on boolean concept learning
-
Morgan Kaufmann, Los Altos, CA
-
M. Kearns, M. Li, L. Pitt, and L. Valiant, Recent results on boolean concept learning, in "Proc. 4th Int. Workshop on Machine Learning," pp. 337-352, Morgan Kaufmann, Los Altos, CA, 1987.
-
(1987)
Proc. 4th Int. Workshop on Machine Learning
, pp. 337-352
-
-
Kearns, M.1
Li, M.2
Pitt, L.3
Valiant, L.4
-
19
-
-
0028460231
-
Efficient distribution-free learning of probabilistic concepts
-
M. J. Kearns and R. E. Schapire, Efficient distribution-free learning of probabilistic concepts, J. Comput. System Sci. 48 (1994), 464-497.
-
(1994)
J. Comput. System Sci.
, vol.48
, pp. 464-497
-
-
Kearns, M.J.1
Schapire, R.E.2
-
20
-
-
0028324717
-
Cryptographic limitations on learning boolean formulae and finite automata
-
M. Kearns and L. G. Valiant, Cryptographic limitations on learning boolean formulae and finite automata, J. Assoc. Comput. Mach. 41 (1994), 67-95.
-
(1994)
J. Assoc. Comput. Mach.
, vol.41
, pp. 67-95
-
-
Kearns, M.1
Valiant, L.G.2
-
22
-
-
0029326211
-
Cryptographic lower bounds for learnability of boolean functions on the uniform distribution
-
M. Kharitonov, Cryptographic lower bounds for learnability of boolean functions on the uniform distribution, J. Comput. Systems Sci. 50 (1995), 600-610.
-
(1995)
J. Comput. Systems Sci.
, vol.50
, pp. 600-610
-
-
Kharitonov, M.1
-
23
-
-
34250091945
-
Learning quickly when irrelevant attributes abound: A new linear-threshold learning algorithm
-
N. Littlestone, Learning quickly when irrelevant attributes abound: a new linear-threshold learning algorithm, Mach. Learning 2 (1988), 285-318.
-
(1988)
Mach. Learning
, vol.2
, pp. 285-318
-
-
Littlestone, N.1
-
26
-
-
1442267080
-
Learning decision lists
-
R. L. Rivest, Learning decision lists, Mach. Learning 2 (1987), 229-246.
-
(1987)
Mach. Learning
, vol.2
, pp. 229-246
-
-
Rivest, R.L.1
-
28
-
-
0030283874
-
Linear-time encodable and decodable error-correcting codes
-
D. A. Spielman, Linear-time encodable and decodable error-correcting codes, IEEE Trans. Inform. Theory 42 (1996), 1723-1731.
-
(1996)
IEEE Trans. Inform. Theory
, vol.42
, pp. 1723-1731
-
-
Spielman, D.A.1
-
29
-
-
33847556259
-
Optimal attribute-efficient learning of disjunction, parity, and threshold functions
-
Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin/New York
-
R. Uehara, K. Tsuchida, and I. Wegener, Optimal attribute-efficient learning of disjunction, parity, and threshold functions, in "Proc. 3rd European Conf. on Comp. Learning Theory," Lecture Notes in Artificial Intelligence, pp. 1761-184, Springer-Verlag, Berlin/New York, 1997.
-
(1997)
Proc. 3rd European Conf. on Comp. Learning Theory
, pp. 1761-2184
-
-
Uehara, R.1
Tsuchida, K.2
Wegener, I.3
-
30
-
-
0021518106
-
A theory of the learnable
-
L. G. Valiant, A theory of the learnable, Comm. Assoc. Comput. Mach. 27 (1984), 1134-1142.
-
(1984)
Comm. Assoc. Comput. Mach.
, vol.27
, pp. 1134-1142
-
-
Valiant, L.G.1
|