메뉴 건너뛰기




Volumn 60, Issue 1, 2000, Pages 161-178

Computational sample complexity and attribute-efficient learning

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; BOOLEAN FUNCTIONS; CODES (SYMBOLS); COMPUTATIONAL COMPLEXITY; CRYPTOGRAPHY; DECISION THEORY; ERROR CORRECTION; PROBABILITY; THEOREM PROVING;

EID: 0034140159     PISSN: 00220000     EISSN: None     Source Type: Journal    
DOI: 10.1006/jcss.1999.1666     Document Type: Article
Times cited : (24)

References (31)
  • 1
    • 0018454769 scopus 로고
    • Fast probabilistic algorithms for Hamiltonian circuits and matchings
    • D. Angluin and L. G. Valiant, Fast probabilistic algorithms for Hamiltonian circuits and matchings, J. Comput. System Sci. 48 (1979), 155-193.
    • (1979) J. Comput. System Sci. , vol.48 , pp. 155-193
    • Angluin, D.1    Valiant, L.G.2
  • 3
    • 33847537342 scopus 로고    scopus 로고
    • pubs.html, 1996.
    • (1996)
  • 4
    • 0030819669 scopus 로고    scopus 로고
    • Empirical support for winnow and weighted-majority algorithms: Results on calendar scheduling domain
    • A. Blum, Empirical support for winnow and weighted-majority algorithms: results on calendar scheduling domain, Mach. Learning 26 (1997), 5-23.
    • (1997) Mach. Learning , vol.26 , pp. 5-23
    • Blum, A.1
  • 5
    • 0029254047 scopus 로고
    • Learning in the presence of finitely or infinitely many irrelevant attributes
    • A. Blum, L. Hellerstein, and N. Littlestone, Learning in the presence of finitely or infinitely many irrelevant attributes, J. Comput. System Sci. 50 (1995), 32-40.
    • (1995) J. Comput. System Sci. , vol.50 , pp. 32-40
    • Blum, A.1    Hellerstein, L.2    Littlestone, N.3
  • 6
    • 0021522644 scopus 로고
    • How to generate cryptographically strong sequences of pseudo-random bits
    • M. Blum and S. Micali, How to generate cryptographically strong sequences of pseudo-random bits, SIAM J. Comput. 13 (1984), 850-864.
    • (1984) SIAM J. Comput. , vol.13 , pp. 850-864
    • Blum, M.1    Micali, S.2
  • 8
    • 0032090599 scopus 로고    scopus 로고
    • Attribute efficient learning with queries
    • N. Bshouty and L. Hellerstein, Attribute efficient learning with queries, J. Comput. System Sci. 56 (1998), 310-319.
    • (1998) J. Comput. System Sci. , vol.56 , pp. 310-319
    • Bshouty, N.1    Hellerstein, L.2
  • 11
    • 0024739191 scopus 로고
    • A general lower bound on the number of examples needed for learning
    • A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant, A general lower bound on the number of examples needed for learning, Inform. and Comput. 82 (1989), 247-261.
    • (1989) Inform. and Comput. , vol.82 , pp. 247-261
    • Ehrenfeucht, A.1    Haussler, D.2    Kearns, M.3    Valiant, L.4
  • 12
    • 0032662978 scopus 로고    scopus 로고
    • A winnow-based approach to spelling correction
    • A. R. Golding and D. Roth, A winnow-based approach to spelling correction, Mach. Learning 34 (1999), 107-130.
    • (1999) Mach. Learning , vol.34 , pp. 107-130
    • Golding, A.R.1    Roth, D.2
  • 14
    • 0001550782 scopus 로고    scopus 로고
    • Modern Cryptography, Probabilistic Proofs and Pseudo-randomness
    • Springer-Verlag, Berlin/New York
    • O. Goldreich, "Modern Cryptography, Probabilistic Proofs and Pseudo-randomness," Algorithms and Combinatorics Series, Vol. 17, Springer-Verlag, Berlin/New York, 1998.
    • (1998) Algorithms and Combinatorics Series , vol.17
    • Goldreich, O.1
  • 15
    • 0024868772 scopus 로고
    • A hard-core predicate for all one-way functions
    • ACM Press, New York
    • O. Goldreich and L. Levin, A hard-core predicate for all one-way functions, in "Proc. 21st Ann. Symp. on Theory of Comp.," pp. 25-32, ACM Press, New York, 1995.
    • (1995) Proc. 21st Ann. Symp. on Theory of Comp. , pp. 25-32
    • Goldreich, O.1    Levin, L.2
  • 17
    • 0024082469 scopus 로고
    • Quantifying inductive bias: AI learning algorithms and Valiant's learning framework
    • D. Haussler, Quantifying inductive bias: AI learning algorithms and Valiant's learning framework, Artificial Intelligence 36 (1988), 177-221.
    • (1988) Artificial Intelligence , vol.36 , pp. 177-221
    • Haussler, D.1
  • 19
    • 0028460231 scopus 로고
    • Efficient distribution-free learning of probabilistic concepts
    • M. J. Kearns and R. E. Schapire, Efficient distribution-free learning of probabilistic concepts, J. Comput. System Sci. 48 (1994), 464-497.
    • (1994) J. Comput. System Sci. , vol.48 , pp. 464-497
    • Kearns, M.J.1    Schapire, R.E.2
  • 20
    • 0028324717 scopus 로고
    • Cryptographic limitations on learning boolean formulae and finite automata
    • M. Kearns and L. G. Valiant, Cryptographic limitations on learning boolean formulae and finite automata, J. Assoc. Comput. Mach. 41 (1994), 67-95.
    • (1994) J. Assoc. Comput. Mach. , vol.41 , pp. 67-95
    • Kearns, M.1    Valiant, L.G.2
  • 22
    • 0029326211 scopus 로고
    • Cryptographic lower bounds for learnability of boolean functions on the uniform distribution
    • M. Kharitonov, Cryptographic lower bounds for learnability of boolean functions on the uniform distribution, J. Comput. Systems Sci. 50 (1995), 600-610.
    • (1995) J. Comput. Systems Sci. , vol.50 , pp. 600-610
    • Kharitonov, M.1
  • 23
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold learning algorithm
    • N. Littlestone, Learning quickly when irrelevant attributes abound: a new linear-threshold learning algorithm, Mach. Learning 2 (1988), 285-318.
    • (1988) Mach. Learning , vol.2 , pp. 285-318
    • Littlestone, N.1
  • 26
    • 1442267080 scopus 로고
    • Learning decision lists
    • R. L. Rivest, Learning decision lists, Mach. Learning 2 (1987), 229-246.
    • (1987) Mach. Learning , vol.2 , pp. 229-246
    • Rivest, R.L.1
  • 28
    • 0030283874 scopus 로고    scopus 로고
    • Linear-time encodable and decodable error-correcting codes
    • D. A. Spielman, Linear-time encodable and decodable error-correcting codes, IEEE Trans. Inform. Theory 42 (1996), 1723-1731.
    • (1996) IEEE Trans. Inform. Theory , vol.42 , pp. 1723-1731
    • Spielman, D.A.1
  • 29
    • 33847556259 scopus 로고    scopus 로고
    • Optimal attribute-efficient learning of disjunction, parity, and threshold functions
    • Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin/New York
    • R. Uehara, K. Tsuchida, and I. Wegener, Optimal attribute-efficient learning of disjunction, parity, and threshold functions, in "Proc. 3rd European Conf. on Comp. Learning Theory," Lecture Notes in Artificial Intelligence, pp. 1761-184, Springer-Verlag, Berlin/New York, 1997.
    • (1997) Proc. 3rd European Conf. on Comp. Learning Theory , pp. 1761-2184
    • Uehara, R.1    Tsuchida, K.2    Wegener, I.3
  • 30


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.